Все о стройке и ремонте

Правильные многогранники сообщение. Реферат правильные многогранники

- (определение ) геометрическое тело, ограниченное со всех сторон плоскими многоугольниками - гранями .

Примеры многогранников:

Стороны граней называются ребрами, а концы ребер - вершинами. По числу граней различают 4-гранники, 5-гранники и т.д. Многогранник называется выпуклым , если он весь расположен по одну сторону от плоскости каждой его грани. Многогранник называется правильным , если его грани правильные многоугольники (т.е. такие, у которых все стороны и углы равны) и все многогранные углы при вершинах равны. Существует пять видов правильных многогранников: тетраэдр , куб , октаэдр , додекаэдр , икосаэдр .

Многогранник в трехмерном пространстве (понятие многогранника) - совокупность конечного числа плоских многоугольников такая, что

1) каждая сторона одного является одновременно стороной другого (но только одного), называемого смежным с первым (по этой стороне);

2) от любого из многоугольников, составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого в свою очередь - к смежному с ним, и т.д.

Эти многоугольники называются гранями , их стороны ребрами , а их вершины - вершинами многогранника.

Вершины многогранника

Ребра многогранника

Грани многогранника

Многогранник называется выпуклым, если он лежит по одну сторону от плоскости любой его грани.

Из этого определения следует, что все грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Поверхность выпуклого многогранника состоит из граней, которые лежат в разных плоскостях. При этом ребрами многогранника являются стороны многоугольников, вершинами многогранника – вершины граней, плоскими углами многогранника – углы многоугольников – граней.

Выпуклый многогранник, все вершины которого лежат в двух параллельных плоскостях, называется призматоидом . Призма, пирамида и усеченная пирамида – частные случаи призматоида. Все боковые грани призматоида являются треугольниками или четырехугольниками, причем четырехугольные грани – это трапеции или параллелограммы.

Человек проявляет интерес к многогранникам на протяжении всей своей сознательной деятельности – от двухлетнего ребёнка, играющего деревянными кубиками, до зрелого математика. Особый интерес к правильным многоугольникам и правильным многогранникам связан с красотой и совершенством формы. Они довольно часто встречаются в природе. Достаточно вспомнить форму снежинок, граней кристаллов, ячеек в пчелиных сотах. Из правильных многоугольников можно складывать не только плоские фигуры, но и пространственные.

Древними греками исследовались также и многие геометрические свойства платоновых тел; (с плодами их изысканий можно ознакомиться по 13-й книге Начал Евклида ((см. также ГЕОМЕТРИЯ)). Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.

Звёздчатый многогранник - это правильный невыпуклый многогранник. Многогранники из-за их необычных свойствсимметрии исследуются с древнейших времён. Также формы многогранников широко используются в декоративном искусстве.

Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа. Снежинка - это звездчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок. Есть много видов звёздчатых многогранников.

Тетраэдр

(от греческого tetra – четыре и hedra – грань)

Простейшим многогранником является Тетраэдр. Здесь нам потребуется продолжить не рёбра, а грани многогранника. Однако четыре плоскости - продолжения граней тетраэдра - ограничивают лишь ту часть трёхмерного пространства, которая совпадает с исходным телом. Шесть плоскостей куба попарно параллельны и взаимно перпендикулярны, подобно сторонам двумерного аналога куба - квадрата. Поэтому и в трёхмерном случае к кубу не добавляется новых частей. Но уже случай октаэдра даёт интересные результаты. Восемь плоскостей - продолжения граней октаэдра - отделяют от пространства новые части, так сказать, «отсеки», внешние по отношению к октаэдру. Вы обнаружите, что эти части суть не что иное, как малые тетраэдры, основания которых совпадают с гранями октаэдра. Если вы теперь мысленно присоедините эти части к октаэдру таким образом, чтобы их общие с октаэдром грани исчезли, оставив нутро нового тела полым, перед вашим взором возникнет невыпуклый многогранник.

Звёздчатый октаэдр

(от греческого octo – восемь и hedra – грань)

Был открыт Леонардо Да Винчи, затем спустя почти 100 лет переоткрыт И.Кеплером, и назван им «Stella octangula» – звезда восьмиугольная. Отсюда октаэдр имеет и второе название «stella octangula Кеплера».

Октаэдр имеет 6 вершин и 12 рёбер. На примере октаэдра можно проверить формулу Эйлера 6в+8г-12р=2. В каждой вершине сходятся 4 треугольника, таким образом, сумма плоских углов при вершине октаэдра составляет 240 °.Из определения правильного многогранника следует, что все ребра октаэдра имеют равную длину, а грани - равную площадь.

Кристаллы алмаза представляют собой гигантские полимерные молекулы и обычно имеют форму октаэдров

Большой звёздчатый додекаэдр

Большой звездчатый додекаэдр принадлежит к семейству тел Кеплера-Пуансо, то есть правильных невыпуклых многогранников. Грани большого звездчатого додекаэдра – пентаграммы, как и у малого звездчатого додекаэдра. У каждой вершины соединяются три грани. Вершины большого звездчатого додекаэдра совпадают с вершинами описанного додекаэдра.Большой звездчатый додекаэдр был впервые описан Кеплером в 1619 г. Это последняя звездчатая форма правильного додекаэдра.

Правильный многогранник, составленный из 12 равносторонних пятиугольников. Додекаэдр имеет 20 вершин и 30 ребер . Вершина додекаэдра является вершиной трех пятиугольников, таким образом, сумма плоских углов при каждой вершине равна 324°.

В алхимии обычно говорится только об этих элементах: огонь, земля, воздух и вода; редко упоминается эфир, потому что это настолько священно. В Пифагорейской школе, стоило бы вам только лишь упомянуть за стенами школы слово «додекаэдр», как вас убили бы на месте. Настолько священной считалась эта фигура. О ней даже не говорили. Спустя двести лет, при жизни Платона, о ней говорили, но только очень осторожно. Почему? Потому, что додекаэдр расположен у внешнего края вашего энергетического поля и является высшей формой сознания. Когда вы достигаете 55-футового предела своего энергетического поля, то оно будет иметь форму сферы. Но самая близкая к сфере внутренняя фигура – это додекаэдр (в действительности, додекаэдро-икосаэдральная взаимосвязь). Вдобавок к этому, мы живём внутри большого додекаэдра, который содержит в себе вселенную. Когда ваш ум достигает предела пространства космоса – а предел тут есть – то он натыкается на додекаэдр, замкнутый в сфере. Додекаэдр есть завершающая фигура геометрии и она очень важна

В основе структуры ДНК лежит священная геометрия, хотя, могут обнаружиться ещё и другие скрытые взаимосвязи. В книге Дана Уинтера «Математика Сердца» (Dan Winter, Heartmath) показано, что молекула ДНК составлена из взаимоотношений двойственности додекаэдров и икосаэдров.

Звёздчатый икосаэдр

Икосаэдр имеет двадцать граней. Если каждую из них продолжить неограниченно, то тело будет окружено великим многообразием отсеков – частей пространства, ограниченных плоскостями граней. Все звездчатые формы икосаэдра можно получить добавлением к исходному телу таких отсеков. Не считая самого икосаэдра, продолжения его граней отделяют от пространства 20+30+60+20+60+120+ 12+30+60+60 отсеков десяти различных форм и размеров. Большой икосаэдр (см. рис) состоит из всех этих кусков, за исключением последних шестидесяти.

Правильный выпуклый многогранник, составленный из 20 правильных треугольников. Каждая из 12 вершин икосаэдра является вершиной 5 равносторонних треугольников, поэтому сумма углов при вершине равна 300° .

В природе встречаются объекты, обладающие симметрией 5-го порядка. Известны, например, вирусы, содержащие кластеры в форме икосаэдра . Открытие фуллерена, молекула которого С60 также обладает этим типом симметрии, стимулировало интерес к подобным объектам. Г.Хуберт с сотрудниками (H.Hubert; Аризонский университет, США) синтезировали кристаллы B6 O из смеси B и B2 O3, которая выдерживалась при температуре 1700o С и давлении от 4 до 5.5 ГПа в течение 30 мин. Образовавшийся субоксид бора имеет ромбоэдрическую кристаллическую решетку с одним из плоских углов при вершине, равным 63.1o. Это значение очень близко к величине угла 63.4o, необходимого для того, чтобы из 20 тетраэдров можно было составить правильный икосаэдр . Первичные икосаэдры способны группироваться в более крупные кластеры: центральный икосаэдр окружен 12 такими же частицами, центры которых лежат в вершинах более крупного икосаэдра второго порядка. Число атомов в таком сверхкластере может достигать 1014. Икосаэдричесий кластер имеет размер около 15 мкм. Этот продукт синтеза не может считаться монокристаллом, так как не имеет периодической кристаллической решетки. Малая плотность таких частиц при твердости, близкой к твердости алмаза, и высокая химическая стойкость делают их перспективными в создании новых материалов для техники.

Тела Кеплера – Пуансо

Два тетраэдра, прошедших один сквозь другой, образуют восьмигранник. Иоганн Кеплер присвоил этой фигуре имя «стелла октангула» -«восьмиугольная звезда».
Она встречается и в природе: это так называемый двойной кристалл . Мы вынуждены признать «стеллу октангулу» правильным многогранником: ведь все ее грани - правильные треугольники одинакового размера и все углы между ними равны! Что же это - шестое Платоново тело?! Нет, просто удавшаяся провокация.

В определении правильного многогранника сознательно - в расчете на кажущуюся очевидность - не было подчеркнуто слово «выпуклый». А оно означает дополнительное требование: «и все грани, которого лежат по одну сторону от плоскости, проходящей через любую из них». Если же отказаться от такого ограничения, то к Платоновым телам, кроме «продолженного октаэдра», придется добавить еще четыре многогранника (их называют телами Кеплера - Пуансо), каждый из которых будет «почти правильным». Все они получаются «озвездыванием» Платонова тела, то есть продлением его граней до пересечения друг с другом, и потому называются звездчатыми. Куб и тетраэдр не порождают новых фигур - грани их, сколько ни продолжай, не пересекаются.

Если же продлить все грани октаэдра до пересечения их друг с другом, то получится фигура, что возникает при взаимопроникновении двух тетраэдров - «стелла октангула», которая называется «продолженным октаэдром».

Икосаэдр и додекаэдр дарят миру сразу четыре «почти правильных многогранника». Один из них - малый звездчатый додекаэдр , полученный впервые Иоганном Кеплером.

Столетиями математики не признавали за всякого рода звездами права называться многоугольниками из-за того, что стороны их пересекаются. А тут - геометрическое тело, гранями которого служат пятиконечные звезды, да еще вдобавок пересекающиеся! Какой же это многогранник?! Людвиг Шлефли не изгонял геометрическое тело из семейства многогранников только за то, что его грани самопересекаются, тем не менее, оставался непреклонным, как только речь заходила про малый звездчатый додекаэдр. Довод его был прост и весом: это кеплеровское животное не подчиняется формуле Эйлера! Его колючки образованы двенадцатью гранями, тридцатью ребрами и двенадцатью вершинами, и, следовательно, В+Г-Р вовсе не равняется двойке.

Шлефли был и прав, и не прав. Конечно же, геометрический ежик не настолько уж колюч, чтобы восстать против непогрешимой формулы. Надо только не считать, что он образован двенадцатью пересекающимися звездчатыми гранями, а взглянуть на него как на простое, честное геометрическое тело, составленное из 60 треугольников, имеющее 90 ребер и 32 вершины.

Тогда В+Г-Р=32+60-90 равно, как и положено, 2. Но зато тогда к этому многограннику неприменимо слово «правильный» - ведь грани его теперь не равносторонние, а всего лишь равнобедренные треугольники. Кеплер не додумался, что у полученной им фигуры есть двойник. Многогранник, который называется «большой додекаэдр » - построил французский геометр Луи Пуансо спустя двести лет после кеплеровских звездчатых фигур.

Большой икосаэдр был впервые описан Луи Пуансо в 1809 году. И опять Кеплер, увидев большой звездчатый додекаэдр , честь открытия второй фигуры оставил Луи Пуансо. Эти фигуры также наполовину подчиняются формуле Эйлера.

На гравюре Маурица Эсхера «Порядок и хаос» звездчатый додекаэдр , символ математической красоты и порядка, окружен прозрачной сферой. В ней отражена бессмысленная коллекция бесполезных вещей. Красота звездчатых фигур находит на удивление мало места в нашей жизни: разве что светильники, да и то очень редко. Даже изготовители елочных украшений не додумались сделать трехмерные звезды, а ими как раз и оказались бы эти многогранники.

Тела Платона, выпуклые многогранники, все грани к рых суть одинаковые правильные многоугольники и все многогранные углы при вершинах правильные и равные (рис. 1a 1д). В евклидовом пространстве Е 3 существуют пять П. м., данные о к рых приведены в … Математическая энциклопедия

Правильный n мерный многогранник многогранники n мерного евклидова пространства, которые являются наиболее симметричными в некотором смысле. Правильные трёхмерные многогранники называются также платоновыми телами. Содержание 1 Определение 2 … Википедия

Многогранник поверхность составленная из многоугольников, а также тело ограниченное такой поверхностью. Содержание 1 Три варианта определения 2 Вариации и обобщения 3 Использование … Википедия

Многогранники, все грани которых суть правильные многоугольники нескольких разных наименований, а многогранные углы при вершинах конгруэнтны. Существует 13 определённых типов П. м. и две бесконечные серии. См. Многогранник …

Или Архимедовы тела выпуклые многогранники, обладающие двумя свойствами: Все грани являются правильными многоугольниками двух или более типов (если все грани правильные многоугольники одного типа, это правильный многогранник); Для любой пары… … Википедия

Тела Архимеда, выпуклые многогранники, все грани к рых суть правильные многоугольники, а многогранные углы конгруэнтны или симметричны. Данные о П. м. приведены в таблице, где В число вершин, Р число ребер, Г число граней, Г k. число nk угольных… … Математическая энциклопедия

Многогранник - Многогранники (правильные выпуклые): 1 тетраэдр; 2 куб; 3 октаэдр; 4 додекаэдр; 5 икосаэдр. МНОГОГРАННИК, поверхность, состоящая из многоугольников (граней) таких, что каждая сторона любого из них есть одновременно сторона другого многоугольника… … Иллюстрированный энциклопедический словарь

Часть пространства, ограниченная совокупностью конечного числа плоских многоугольников (см. ГЕОМЕТРИЯ), соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого… … Энциклопедия Кольера

В трёхмерном пространстве, совокупность конечного числа плоских многоугольников, такая, что каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного), называемого смежным с первым (по этой стороне); от… … Большая советская энциклопедия

Додекаэдр Правильный многогранник или платоново тело это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией … Википедия

Книги

  • Волшебные грани № 12. Многогранник. Правильные многогранники , . Создание моделей многогранников из картона очень увлекательное и доступное занятие, это "магия превращения" листа бумаги в объемную фигуру. Специальный выпуск позволяет собрать 5 правильных…
  • Группы отражений и правильные многогранники , Смирнов Е.Ю.. Брошюра написана по материалам цикла лекций, прочитанных автором участникам Летней школы "Современная математика" в Дубне 20-26 июля 2008 г. В ней излагается классификация правильных…

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОСКОВСКОЙ ОБЛАСТИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ ГУМАНИТАРНЫЙ ИНСТИТУТ

КАФЕДРА МАТЕМАТИКИ И МЕТОДИКИ ПРЕПОДАВАНИЯ МАТЕМАТИКИ

РЕФЕРАТ

ПРАВИЛЬНЫЕ И ПОЛУПРАВИЛЬНЫЕ МНОГОГРАННИКИ

ИСПОЛНИТЕЛИ: .

СТУДЕНТКИ 3-ГО КУРСА 1 ГРУППЫ

ФИЗИКО-МАТЕМАТИЧЕСКОГО ФАКУЛЬТЕТА

ПАНКОВА АНАСТАСИЯ ОЛЕГОВНА

АНТОНОВА ЕЛЕНА НИКОЛАЕВНА

Г. ОРЕХОВО-ЗУЕВО

Правильных многогранников

вызывающе мало, но этот весьма

скромный по численности отряд

сумел пробиться в самые глубины

различных наук.

Л. Кэрролла.

1. Введение.

Человек проявляет интерес к правильным многогранникам на протяжении всей своей сознательной деятельности – от двухлетнего ребенка, играющего деревянными кубиками, до зрелого математика, наслаждающегося чтением книг о многогранниках. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие – в виде вирусов (которые можно рассмотреть с помощью электронного микроскопа). Пчелы строили шестиугольные соты задолго до появления человека, а в истории цивилизации создание многогранных тел (подобных пирамидам) наряду с другими видами пластических искусств уходит в глубь веков.

Наш реферат посвящен теме правильных и полуправильных многогранников. Их изучали Теэтет, Платон, Евклид, Гипсикл и Папп. Также и нас эти удивительные тела не оставили равнодушной. Ведь их форма – образец совершенства!

Сколько всего правильных многогранников? Какими особенностями они обладают? Как изготовить модель какого-либо правильного многогранника? Где можно встретить эти тела? Ответить на эти и многие другие вопросы и является целью нашей работы.

2. Правильные многогранники.

Многогранник называется правильным , если: во-первых, он выпуклый; во-вторых, все его грани – равные друг другу правильные многоугольники; в-третьих, в каждой его вершине сходится одинаковое число ребер; и, в-четвертых, все его двугранные углы равны.

Возникает вопрос: сколько же существует правильных многогранников? На первый взгляд ответ на этот вопрос очень простой – столько же, сколько существует правильных многоугольников. Однако это не так. В «Началах Евклида» мы находим строгое доказательство того, что существует только пять выпуклых правильных многогранников - ни больше ни меньше, а их гранями могут быть только три типа правильных многоугольников: треугольники, квадраты и пентагоны или правильные пятиугольники (тетраэдр, гексаэдр (куб), октаэдр, икосаэдр и додекаэдр).

Названия правильных многогранников пришли из Греции. В дословном переводе с греческого «тетраэдр», «октаэдр», «гексаэдр», «додекаэдр», «икосаэдр» означают: «четырехгранник», «восьмигранник», «шестигранник», «двенадцатигранник», «двадцатигранник». Этим красивым телам посвящена 13-я книга "Начал" Евклида.

Все правильные многогранники получили название Платоновых тел , так как они занимали важное место в философской концепции Платона об устройстве мироздания.

Платон (427-347 годы до н.э.)

Четыре многогранника олицетворяли в ней четыре сущности или «стихии». Тетраэдр символизировал огонь, так как его вершина устремлена вверх; икосаэдр - воду, так как он самый «обтекаемый»; куб - землю, как самый «устойчивый»; октаэдр - воздух, как самый «воздушный». Пятый многогранник, додекаэдр, воплощал в себе «все сущее или» «Вселенский разум», символизировал все мироздание, считался главным.

Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода=воздух/огонь.

Тетраэдр эточетырехгранник, все грани которого треугольники, т.е. треугольная пирамида; правильный тетраэдр ограничен четырьмя равносторонними треугольниками; один из пяти правильных многоугольников (рис. 1-а). В тетраэдре три равносторонних треугольника встречаются в одной вершине; при этом их основания образуют новый равносторонний треугольник. Тетраэдр имеет наименьшее число граней среди Платоновых тел и является трехмерным аналогом плоского правильного треугольника, который имеет наименьшее число сторон среди правильных многоугольников.

Куб или правильный гексаэдр - это правильная четырехугольная призма с равными ребрами, ограниченная шестью квадратами (рис 1-б). Куб, получается, если соединить три квадрата в одной точке и затем добавить еще три.

Октаэдр - этовосьмигранник; тело, ограниченное восемью треугольниками; правильный октаэдр ограничен восемью равносторонними треугольниками; один из пяти правильных многогранников(рис.1-в). В октаэдре в одной вершине встречаются четыре треугольника; в результате получается пирамида с четырехугольным основанием.

Икосаэдр - этодвадцатигранник, тело, ограниченное двадцатью многоугольниками; правильный икосаэдр ограничен двадцатью равносторонними треугольниками (рис 1-г).

Додекаэдр - этодвенадцатигранник, тело, ограниченное двенадцатью многоугольниками; правильный пятиугольник (рис 1-д). Оноснован на использовании следующего правильного многоугольника – пентагона .

Рисунок 1. Платоновы тела: (а) октаэдр («Огонь»), (б) гексаэдр или куб («Земля»),
(в) октаэдр («Воздух»), (г) икосаэдр («Вода»), (д) додекаэдр («Вселенский разум»)

Следующим правильным многоугольником является шестиугольник . Однако если соединить три шестиугольника в одной точке, то мы получим поверхность, то есть из шестиугольников нельзя построить объемную фигуру. Любые другие правильные многоугольники выше шестиугольника не могут образовывать тел вообще. Из этих рассуждений вытекает, что существует только пять правильных многогранников, гранями которых могут быть только равносторонние треугольники, квадраты и пентагоны.

Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением “крыш” на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен - ведь правильных многоугольников на плоскости бесконечно много!

Развертки правильных многогранников:


3. Доказательство существования пяти правильных многогранников.

Мы знаем, что правильных многогранников существует только пять. Теперь попробуем это доказать.

Предположим, что правильный многогранник имеет Г граней, из которых каждая есть правильный n-угольник, у каждой вершины сходятся k ребер, всего в многограннике В вершин и Р ребер, причем n3, поскольку у каждой вершины сходится не менее трех сторон, и k3, поскольку у каждой вершины сходится не менее трех ребер.

Считая ребра по граням, получим: n Г = 2Р.

Каждое ребро принадлежит двум граням, значит, в произведении

n Г число Р удвоено.

Считая ребра по вершинам, получим: kВ = 2Р, поскольку каждое ребро упирается в 2 вершины. Тогда равенство Эйлера дает:

или
. (*)

По условию
, тогда
, т.е. n и k не могут быть более трех. Например, если бы было n = 4 и k = 4, то
тогда
и
Прикидкой можно проверить, что и другие значения n и k, большие 3, не удовлетворяют равенству (*). Значит, либо k = 3, либо n = 3.

Пусть n = 3 , тогда равенство (*) примет вид:

или

Поскольку
может принимать значения , ,

т.е. k = 3, 4, 5.

Если k = 3, n = 3 , то P = 6, Г =
В =
- это тетраэдр (см. табл. 1).

Если k = 4, n = 3 , то Р = 12, Г =
, В =
- это октаэдр.

Если k = 5, n = 3 , то Р = 30, Г =
В =
- это икосаэдр.

Пусть теперь k = 3, тогда равенство (*) примет вид:

, или

Отсюда следует, что n может принимать значения 3, 4, 5.

Случай n = 3 разобран.

Остаются два случая:

n = 4 при k = 3, тогда , т.е. Р = 12, Г = , В = - это куб.

n = 5 при k = 3, тогда
, Р = 30, Г = 12, В = 30 - это додекаэдр.

Вот мы и доказали, что существует, пять и только пять правильных выпуклых многогранников. Доказательство того, что больше не может быть, содержится в «Началах» Эвклида, причем автором этого доказательства считается Теэтет. Известно, что в течение нескольких лет Теэтет состоял в Академии и был близок к Платону, и этой близостью можно объяснить то обстоятельство, что Платон оказался знакомым с новейшими в то время открытиями в области стереометрии.

Правильным многоугольникам и правильным многогранникам связан с красотой и совершенством формы... Это последняя звездчатая форма правильного додекаэдра. Правильный многогранник ,составленный из 12 равносторонних...

  • Построение графических примитивов Математические модели поверхностей и объектов

    Курсовая работа >> Математика

    Остальные правильные многогранники . Сам факт существования всего пяти действительно правильных многогранников удивителен - ведь правильных многоугольников...

  • Кристаллы (2)

    Реферат >> Геология

    Рассматривались тогдашней наукой. В значительной мере правильные многогранники были изучены древними греками. Некоторые... пяти правильным многогранникам и первое известное доказательство того, что их ровно пять. Правильные многогранники характерны...

  • многогранник звездчатый платон

    Первые упоминания о многогранниках известны еще за три тысячи лет до нашей эры в Египте и Вавилоне. Достаточно вспомнить знаменитые египетские пирамиды и самую известную из них - пирамиду Хеопса. Это правильная пирамида, в основании которой квадрат со стороной 233 м и высота которой достигает 146,5 м. Не случайно говорят, что пирамида Хеопса - немой трактат по геометрии.

    История правильных многогранников уходит в глубокую древность. Начиная с 7 века до нашей эры в Древней Греции создаются философские школы. Большое значение в этих школах приобретают рассуждения, с помощью которых удалось получать новые геометрические свойства.

    Одной из первых и самых известных школ была Пифагорейская, названная в честь своего основателя Пифагора. Отличительным знаком пифагорейцев была пентаграмма, на языке математики - это правильный невыпуклый или звездчатый пятиугольник. Пентаграмме присваивалось способность защищать человека от злых духов.

    Пифагорейцы полагали, что материя состоит из четырех основных элементов: огня, земли, воздуха и воды. Существование пяти правильных многогранников они относили к строению материи и Вселенной. Согласно этому мнению, атомы основных элементов должны иметь форму различных тел:

    Вселенная - додекаэдр

    Земля - куб

    Огонь - тетраэдр

    Вода - икосаэдр

    Воздух - октаэдр

    Позже учение пифагорейцев о правильных многогранниках изложил в своих трудах другой древнегреческий ученый, философ - идеалист Платон. С тех пор правильные многогранники стали называться платоновыми телами.

    Открытие тринадцати полуправильных выпуклых многогранников приписывается Архимеду, впервые перечислившего их в недошедшей до нас работе. Ссылки на эту работу имеются в трудах математика Паппа.

    При первом же знакомстве с этой темой у вас возникает естественный вопрос: что такое многогранник? Геометрию можно определить иногда как науку о пространстве и пространственных фигурах - двумерных в планиметрии и трехмерных в стереометрии. Если использовать теоретико-множественный язык, то фигуру на плоскости можно было бы описать как множество отрезков прямых, ограничивающих часть плоскости. Такая плоская фигура называется многоугольником. Из этого следует, что многогранник можно определить как множество многоугольников, ограничивающих часть трехмерного пространства.

    Многогранник - часть пространства, ограниченная совокупностью конечного числа плоских многоугольников, соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого смежным), причем, вокруг каждой вершины существует ровно один цикл многоугольников. Эти многоугольники называются гранями, их стороны - ребрами, а вершины - вершинами многогранника.

    Классификация многогранников:

    • 1. Правильные многогранники
    • 2. Призмы
    • 3. Пирамиды

    Призма - многогранник, две грани которого (основания призмы) представляют собой равные многоугольники с взаимно параллельными сторонами, а все другие грани параллелограммы. Призма называется прямой, если её ребра перпендикулярны плоскости основания. Если основанием призмы является прямоугольник, призму называют параллелепипедом.

    Пирамида - это многогранник, одна грань которого многоугольник, а остальные грани - треугольники с общей вершиной. Пирамида называется правильной, если в основании лежит правильный многоугольник и высота пирамиды проходит через центр многоугольника. Пирамида называется усеченной, если вершина её отсекается плоскостью.

    Призматоид - многогранник, ограниченный двумя многоугольниками, расположенными в параллельных плоскостях (они являются его основаниями); его боковые грани представляют собой треугольники или трапеции, вершины которых являются и вершинами многоугольников оснований.