Все о стройке и ремонте

Стабилизатор на операционном усилителе. Стабилизаторы напряжения и тока на имс

Текущая страница: 1 (всего у книги 1 страниц)

Стабилизаторы напряжения и тока на ИМС

Задача создания стабильного источника питания встает всякий раз, когда необходимо обеспечить независимость параметров электронного устройства от изменений питающего напряжения. Современная аппаратура, работающая на цифровых и аналоговых микросхемах, всегда предусматривает наличие стабилизаторов напряжения и тока, как правило, нескольких. С распространением интегральных операционных усилителей (ОУ) появилась возможность решить эту задачу просто и эффективно с точностью регулировки и стабильности в диапазоне 0,01…0,5 %, причем ОУ легко встраивать в традиционные стабилизаторы напряжения и тока.

Простейший стабилизатор напряжения представляет собой усилитель постоянного тока, на вход которого подано постоянное напряжение стабилитрона или часть его. Нагрузочная способность такого стабилизатора определяется силой максимального выходного тока ОУ.

Следящие стабилизаторы, как известно, работают на принципе сравнения опорного и выходного напряжений, усиления их разности и управления электропроводностью регулирующего транзистора.

Стабилизатор по схеме рис. 1 выдает напряжение U вых большее, чем опорное напряжение стабилитрона V D1, а стабилизатор по схеме рис. 2 – меньшее.

Рис. 1. Стабилизатор с делителем выходного напряжения

Рис. 2. Стабилизатор с делителем опорного напряжения

Стабилизаторы питаются от одного источника. С помощью эмиттерного повторителя V T2 увеличивают ток нагрузки, в нашем примере – до 100 мА, но можно и более с составным повторителем на мощном транзисторе. Транзистор V T1 защищает выходной транзистор V T2 от перегрузок по току, причем датчиком тока служит резистор R8 небольшого сопротивления, включенный в цепь эмиттера транзистора V T2. Когда падение напряжения на нем превысит Uб–э=0,6 В, откроется транзистор V T1 и зашунтирует эмиттерный переход транзистора V T2. При токах нагрузки до 10… 15 мА резисторы R7, R8 и транзисторы V T1, VT2 можно не ставить. Отметим, что в стабилизаторах по схемам рис. 1 и 2 входное напряжение не должно превышать максимально допустимой для ОУ суммы напряжений питания.

Если проектируемый источник питания имеет выходное напряжение, не меньшее чем сумма минимально допустимых напряжений питания для имеющегося ОУ, то его лучше включить в стабилизатор таким образом, чтобы усилитель питался стабилизированным напряжением. Схема подобного стабилизатора приведена на рис. 3.

Рис. 3. Улучшенный стабилизатор напряжения:

a – принципиальная схема, б – нагрузочная характеристика

Здесь дополнительно включены несколько элементов, улучшающих работу стабилизатора напряжения. Потенциал выхода О У DA1 смещен в сторону положительного напряжения с помощью стабилитрона V D3 и транзистора V T1. Выходной эммитерный повторитель – составной (VT2, VT3), а к базе защитного транзистора V T4 подключен делитель R4R5, что позволяет создать «падающую» характеристику ограничения тока перегрузки. Ток короткого замыкания не превышает 0,3 А, хотя нормальный рабочий ток составляет 0,5 А. Термоком–пенсированный источник опорного напряжения выполнен на микросхеме К101КТ1А (DA2). Выходное напряжение стабилизатора, равное +15 В, изменяется всего на 0,0002 % при изменении входного напряжения в пределах 19…30 В; при изменении тока нагрузки от нуля до номинального выходное напряжение падает лишь на 0,001 %. В этом стабилизаторе подавление пульсаций входного напряжения частотой 100 Гц составляет 120 дБ. К достоинствам стабилизатора следует отнести также и то, что в отсутствии нагрузки потребляемый ток составляет около 10 мА. При скачкообразном изменении тока нагрузки выходное напряжение устанавливается с погрешностью 0,1 % за время не более 5 мкс.

Практически нулевые пульсации напряжения на выходе может обеспечить стабилизатор по схеме рис. 4.

Рис. 4. Источник питания с компенсированными пульсациями

Если движок переменного резистора R1 находится в верхнем (по схеме) положении, амплитуда пульсаций максимальна. По мере перемещения движка вниз амплитуда будет уменьшаться, так как напряжение пульсаций, поданное на инвертирующий вход ОУ через конденсатор С2, в противофазе складывается с выходным напряжением пульсаций. Примерно в среднем положении движка резистора R1 пульсации будут компенсированы.

Стабилизаторы по приведенным выше схемам рассчитаны на положительное выходное напряжение. Чтобы получить отрицательное, надо в качестве повторителя применить р–n–р транзистор, а также заземлить положительную шину питания ОУ. Но можно поступить по–другому, если в аппаратуре требуются стабилизированные напряжения разной полярности. На рис. 5 приведены две упрощенные схемы соединения стабилизаторов для получения выходных напряжений разного знака.

Рис. 5. Схема образования двуполярного стабилизированного напряжения:

а – на разнополярных стабилизаторах, б - на одинаковых стабилизаторах

В первом случае входная и выходная цепи имеют общую шину. Пусть, например, имеются только положительные стабилизаторы. Тогда в стабилизаторе по второй схеме их можно применить, если оба канала по входным цепям гальванически развязаны, чтобы можно было заземлять положительный полюс нижнего (по схеме) стабилизатора. Источником опорного напряжения для одного из каналов служит стабилитрон, а для второго – выходное напряжение первого стабилизатора. Для этого необходимо включить делитель из двух резисторов между выводами +U СT и – U CT стабилизаторов и подвести напряжение средней точки делителя к неинвертирующему входу ОУ второго стабилизатора, заземлив инвертирующий вход ОУ. Тогда выходные напряжения двух стабилизаторов (несимметричные в общем случае) связаны и регулирование напряжений осуществляется одним переменным резистором.

Если для питания устройства используется одна батарея, а необходимы два питающих напряжения с заземленной средней точкой, тр можно применить активный делитель на ОУ с повторителями для увеличения нагрузочной способности (рис. 6).

Рис. 6. Преобразование однополярного напряжения в симметричное двуполярное

Если R1 = R2, то равны и выходные напряжения относительно заземленной средней точки. Через выходные транзисторы V T1 и V T2 протекают полные токи нагрузки, а падения напряжения на участках коллектор – эмиттер равны половине входного напряжения. Зто надо иметь в виду при выборе радиаторов охлаждения.

Ключевые стабилизаторы напряжения зарекомендовали себя наилучшим образом с точки зрения экономичности, так как КПД таких устройств всегда высокий. Несмотря на их сложность по сравнению с линейными стабилизаторами-, только за счет уменьшения размеров теплоотводящего радиатора проходного транзистора ключевой стабилизатор позволяет уменьшить габариты регулируемого мощного источника питания в два–три раза. Недостаток ключевых стабилизаторов заключается в повышенном уровне помех. Однако рациональное конструирование, когда весь блок выполнен в виде экранированного модуля с расположенной непосредственно на теплоотводе мощного транзистора платой управления, позволяет свести помехи к минимуму. Устранить «пролезание» высокочастотных помех в не–стабилизиоованный источник первичного питания и нагрузку можно путем включения последовательно радиочастотных дросселей, рассчитанных на постоянный точ 1…3 А. Имея в виду эти замечания, подготовленный радиолюбитель может браться за создание ключевых стабилизаторов напряжения, в которых с успехом работают интегральные компараторы.

Для примера приведём описание релейного стабилизатора на базе микросхемы К554СА2 (рис. 7).

Рис. 7. Релейный стабилизатор с регулированием выходного напряжения

В нем компаратор DA1 работает от источников напряжением + 12 и – G В. Эта комбинация образована подключением вывода 11 положительного питания DA1 к эмиттеру транзистора V TI (+18 В), вывода 2 – к стабилитрону V D6 (примерк +6 В), вывода 6 отрицательного питания – к нулевому потенциалу общей шины. Опорное напряжение стабилизатора формируется диодами V D3 VD5, оно равно +4,5 В. Это напряжение подается ка неинвертирующий вход компаратора DA1, включенного по схеме детектора уровня с гистерезисной характеристикой из-за положительной обратной связи по цепи R5, R3. Цепь отрицательной обратной связи замыкается через усилительный транзистор V T2, ключевой элемент на транзисторах V T3, VT4 и фильтр L 1C7. Глубину отрицательной обратной связи по выходному напряжению регулируют переменным резистором R4, в результате оно изменяется в пределах 4…20 В при минимальном входном нестабилизированном напряжении +23 В и максимальном – до +60 В с применением элементов, рассчитанных на такое напряжение. В то же время переменная составляющая выходного напряжения (пульсации) проходит без ослабления через конденсатор С4, поэтому регулирование выходного напряжения не приводит к пропорциональному изменению пульсаций.

Данный стабилизатор напряжения относится к числу автогенерирующих, когда в зависимости от входного напряжения и тока нагрузки, разряжающего накопительный конденсатор С7, автоматически меняется как период автоколебаний, так и время включенного состояния транзисторов V T3, VT4. Усилитель управления на компараторе DA1 и транзисторе V T2 открывает ключевой элемент в тот момент, когда потенциал инвертирующего входа станет немного меньше, чем потенциал неин–вертирующего (опорного) входа. В этот момент напряжение на нагрузке падает несколько ниже заданного Уровня стабилизации, т. е. пульсирует. После включения транзисторов V T3, VT4 ток через дроссель L 1 нарастает, его индуктивность и конденсатор С7 запасают энергию, так что потенциал инвертирующего входа повышается. Благодаря действию усилителя управления ключевой элемент закрывается. Затем фильтр L 1C7 отдает некоторую часть запасенной энергии в нагрузку, причем полярность напряжения на дросселе L 1 изменяется и цепь питания замыкается через диод V D7. Как только напряжение на конденсаторе С7 станет ниже опорного на величину гистерезиса, вновь включаются транзисторы V T3, VT4. Далее циклы повторяются.

Скорость этих процессов определяется номиналами дросселя L 1, конденсатора С7 и нагрузкой. Оценку частоты можно произвести по формуле

где АU – амплитуда пульсаций выходного напряжения.

Очевидно, что изменение частоты автоколебаний релейного стабилизатора можно значительно уменьшить, если увеличить разность между входным и выходным напряжениями. Частота автоколебаний, когда стабилизатор работает с лучшим КПД, составляет 10…40 кГц.

Особое внимание следует обратить на выбор материала сердечника дросселя и типа демпфирующего диода V D7.

Наилучший материал тороидального сердечника без зазора – прессованный порошкообразный пермаллой марок МП160-1, МП140-1, МП140-3. При выборе параметров дросселя следует обеспечить условие непрерывности тока, когда время полной разрядки дросселя через диод V D7 на конденсатор С7 и нагрузку больше, чем время закрытого состояния ключевого элемента. Необходимо выполнение следующего неравенства;

где I нагр – минимальное значение силы тока нагрузки.

Можно также применить дроссели фильтров промышленного изготовления, например из серий Д8, Д5 – плоские и др., среди которых выбирают типономинал с требуемой индуктивностью, рассчитанной на ток под–магничивания не менее ожидаемого максимального тока нагрузки и пригодный к использованию на частотах до 50 кГц.

Диод V D7 должен быть обязательно быстродействующим с большим допустимым импульсным током, не менее удвоенного значения тока нагрузки. В стабилизаторе по схеме на рис. 7, где ток нагрузки 2 А, возможна замена его на диоды КД212Б, КД217А и некоторые другие.

Кроме того, необходимо выбрать высококачественный оксидно–полупроводниковый конденсатор С7 с двойным запасом по емкости относительно расчетной величины и по номинальному напряжению, желательно из ряда К53 или танталовый типов К52-7А, К52-9, К52-10. Можно применить бумажные конденсаторы, но габариты стабилизатора тогда увеличатся.

Как известно, емкость электролитических конденсаторов с ростом частоты уменьшается, а потери в них возрастают. Ориентировочно для танталовых конденсаторов типа ЭТО емкость на частоте 20 кГц уменьшается в 10 раз, а для оксидно–полупроводниковых-= на 30… 40 % по сравнению со значением емкости на частоте 50 Гц. Поэтому и приходится выбирать емкость конденсатора С7 с запасом, а также ограничивать частоту автоколебаний до 20 кГц. Это – оптимальная величина. Фильтрующие конденсаторы малой емкости объединяют параллельно в батарею, которую дополнительно шунтируют керамическим конденсатором С9 емкостью не менее 1,5…2,2 мкФ. Если такой возможности нет, можно увеличить ДU, а к выходу подключить дополнительный фильтр с малым омическим сопротивлением, чтобы на нем не создавать заметного падения напряжения при изменениях тока нагрузки.

Несоблюдение этих рекомендаций обычно приводит к тому, что на низкокачественных дросселе, диоде и конденсаторе фильтра выделяется чрезмерная мощность, падает КПД стабилизатора и возрастают пульсации отфильтрованного напряжения. Разумеется, что транзисторы ключевого элемента также необходимо выбирать высокочастотными и достаточной мощности.

Приведенная на рис. 7 схема релейного стабилизатора может быть дополнительно снабжена устройством защиты от превышения тока нагрузки в режиме короткого замыкания. Амплитуда пульсаций выходного напряжения при определенных условиях может быть уменьшена путем подключения ключевого элемента к части обмотки дросселя L 1, а диода V D7 - ко всей его обмотке. При этом напряжении коллектор – эмиттер транзистора V T4 становится меньше, а обратное напряжение на диоде V D7 – больше.

Большая потребность в стабилизаторах для питания аппаратуру привела к тому, что были разработаны и внедрены специальные линейные микросхемы – стабилизаторы напряжения. В интегральном исполнении преобладают последовательные регуляторы с непрерывным пли импульсным режимом управления. Стабилизаторы строятся как для положительных, так и для отрицательных напряжений питания. Выходное напряжение может быть регулируемым или фиксированным, например +5 В для питания блоков с цифровыми ТТЛ–микросхемами или ± 15 В для аналоговых микросхем. Микросхемам с большими токами нагрузки необходимы радиаторы охлаждения. Это не вызывает конструктивных трудностей, так как микросхемы размещены в таких же корпусах, как и мощные транзисторы.

Перечень микросхем приведен в таблице.

Из выпускаемых интегральных стабилизаторов наиболее распространены относящиеся к категории регулируемых стабилизаторов КРН2ЕН1 и КР142ЕН2. Для этих микросхем с различными буквенными индексами характерны следующие параметры:

коэффициент нестабильности по входному напряжению 0,1.. 0,5% коэффициент нестабильности по току нагрузки 0,2… 1 %

В микросхеме стабилизатора КР142ЕН1.2 нашли воплощение те принципы, которые мы рассмотрели на примере стабилизаторов по схемам на рис. 1, 2 и 3. Подключение стабилизатора КР142ЕН1 показано на рис. 8.

Рис. 8. Основная схема включения регулятора КР142ЕН1

Опорное напряжение на выводе 5 микросхемы составляет около 2 В, причем делитель напряжения, снимаемого с опорного стабилитрона, введен в состав микросхемы. Благодаря этому при построении стабилизаторов с выходными напряжениями от 3 до 30 В применяют одну и ту же схему включения с внешним делителем выходного напряжения. Дополнительно отметим, что у микросхемы КР142ЕН1.2 имеются свободные выводы не только инвертирующего (вывод 3), но и неинвертирующего (вывод 4) входов усилителя, что упрощает стабилизатор отрица тельного напряжения с этой ИМС. В этом заключается основное отличие микросхемы КРН2ЕШ,2 от микросхемы 142ЕН1.2 более раннего выпуска.

Внешний транзистор V T1 – это эмиттерный повторитель для увеличения тока нагрузки до 1…2 А. Если требуется ток не более 50 мА, то транзистор следует исключить, используя вывод 8 микросхемы вместо эмиттерного вывода транзистора V T1.

В составе микросхемы имеется транзистор, защищающий выходной каскад от перегрузки по току. Токо–ограничительное сопротивление резистора R4 выбирают из расчета падения напряжения на нем 0,66 В при протекании аварийного тока. Без змиттерного повторителя V T1 следует установить резистор R4 сопротивлением 10 Ом.

Чтобы создать «падающую» характеристику ограничения тока перегрузки, подключают делитель R2R3 и производят расчет по следующим зависимостям:

Пример, I макс = 0,6 А (задано); I К3 – 0,2 А (выбираем не менее 1 /з I макс); U бЭ =0,66 В; U вых =12 В (задано); а = 0,11 (по расчету); R3 = 10 кОм (типичное значение); R2 = 1,24 кОи; R4 = 3,7 Ом.

В микросхеме дополнительно имеется вывод 14 для Управления стабилизатором. Если подать на этот вход единичный ТТЛ–уровень + (2,5…5) В, то выходное напряжение стабилизатора упадет до нуля. Чтобы обратный ток при наличии емкостной нагрузки не разрушил выходной транзистор, установлен диод V D1.

Конденсатор С1 емкостью 3,3…10 мк подавляет шум стабилитрона, однако установка его не является необходимой. Конденсатор С2 (емкостью до 0,1 мк) – элемент частотной коррекции; допустимо вместо него соединить вывод 13 с «земляным» проводом через последовательную RС–цепь 360 Ом (максимум) и 560 пФ (минимум).

На базе микросхем КР142ЕШ.2 (рис. 8) можно создавать стабилизаторы отрицательных напряжений (рис. 9).

Рис 9. Стабилизация отрицательного напряжения

При этом стабилитрон V D1 смещает уровень напряжения на выводе 8 относительно входного напряжения. Базовый ток транзистора V T1 не должен превышать максимально допустимого тока стабилитрона, иначе следует применить составной транзистор.

Широкие возможности микросхем КР142ЕН1,2 позволяют создавать на их основе релейные стабилизаторы напряжения, пример которых дан на рис. 10.

Рис. 10. Релейный стабилизатор напряжения

В таком стабилизаторе опорное напряжение, как и в стабилизаторе по схеме рис. 8, установлено делителем R4R5, а амплитуда пульсаций выходного напряжения на нагрузке задается вспомогательным делителем R2R3 и равна &U=U B x-R4IR3. Частота автоколебаний определяется из тех же соображений, что и для стабилизатора по схеме на рис. 7. Следует лишь иметь в виду, что ток нагрузки не может изменяться в широких пределах, обычно не более чем в два раза от номинального значения. Преимуществом релейных стабилизаторов является высокий КПД.

Необходимо рассмотреть еще один класс стабилизаторов – стабилизаторов тока, преобразующих напряжение в ток независимо от изменения сопротивления нагрузки. Из таких стабилизаторов, позволяющих заземлять нагрузку, отметим стабилизатор по схеме на рис. 11.

Рис. 11. Стабилизатор тока на ОУ

Ток нагрузки стабилизатора I u =U B-x .lRl. Интересно, что если напряжение U BX подавать на инвертирующий вход, то изменится только направление тока без изменения его значения.

Более мощные источники тока предусматривают подключение к ОУ усилительных транзисторов. На рис. 12 дана схема источника тока, а на рис. 13 – схема приемника тока.


Рис. 12. Прецизионная схема источника тока; входное напряжение – отрицательное

Рис 13. Схема прецизионного отвода тока; входное напряжение – положительное

В обоих устройствах сила тока определяется расчетом так же, как и в предыдущем варианте стабилизатора. Этот ток тем точнее зависит лишь от напряжения U вх и номинала резистора R1, чем меньше входной ток ОУ и чем меньше ток управления первого (после ОУ) транзистора, который выбран поэтому полевым. Ток нагрузки может достигать 100 мА.

Схема простого мощного источника тока для зарядного устройства показана на рис. 14.

Рис. 14. Источник тока высокой мощности

Здесь R4 – токоизмерительный проволочный резистор. Номинальное значение тока нагрузки I н =ДU/R4 = 5 А устанавливается. примерно при среднем положении движка резистора R1. При зарядке автомобильной аккумуляторной батареи напряжение U вх >18 В без учета пульсаций выпрямленного переменного напряжения. В таком устройстве следует применять ОУ с диапазоном входного напряжения вплоть до напряжения положительного питания. Такими возможностями обладают ОУ К553УД2, К153УД2, К153УД6, а также КР140УД18.

Литература

Бокуняев А. А. Релейные стабилизаторы постоянного напряжения – М: Энергия, 1978, 88 с.

Рутксвски Дж. Интегральные операционные усилители. – М.: Мир, 1978, 323 с.

Xоролац П, Хилл У. Искусство схемотехники, т. 1. – М.; Мир, – 1986, 598 с.

Спенсер Р Недорогой источник питания с нулевыми пульсациями. – Электроника, 1973, № 23, с 62.

Шило В. Л Линейные интегральные схемы. – М. Cов. Радио, 1979, 368 с.

Основным недостатком линейных стабилизаторов средней и большой мощности является их низкий КПД. Причем, чем меньше выходное напряжение источника питания, тем меньше становится его КПД. Это объясняется тем, что в режиме стабилизации силовой транзистор источника питания обычно включен последовательно с нагрузкой, а для нормальной работы такого стабилизатора на регулирующем транзисторе должно действовать напряжение коллектор-эмиттер (11кэ) не менее 3...5 В. При токах более 1 А это дает значительные потери мощности за счет выделения тепловой энергии, рассеиваемой на силовом транзисторе. Что приводит к необходимости увеличивать площадь теплоотводящего радиатора или применять вентилятор для принудительного охлаждения.

Широко распространенные благодаря низкой стоимости интегральные линейные стабилизаторы напряжения на микросхемах из серии 142ЕН(5...14) обладают таким же недостатком. В последнее время в продаже появились импортные микросхемы из серии "LOW DROP" (SD, DV, LT1083/1084/1085). Эти микросхемы могут работать при пониженном напряжении между входом и выходом (до 1...1.3 В) и обеспечивают на выходе стабилизированное напряжение в диапазоне 1,25...30 В при токе в нагрузке 7,5/5/3 А соответственно. Ближайший по параметрам отечественный аналог типа КР142ЕН22 имеет максимальный ток стабилизации 5 А.

При максимальном выходном токе режим стабилизации гарантируется производителем при напряжении вход-выход не менее 1,5 В. Микросхемы также имеют встроенную защиту от превышения тока в нагрузке допустимой величины и тепловую защиту от перегрева корпуса.

Данные стабилизаторы обеспечивают нестабильность выходного напряжения "0,05%/В, нестабильность выходного напряжения при изменении выходного тока от 10 мА до максимального значения не хуже 0,1 %/В. Типовая схема включения таких стабилизаторов напряжения приведена на рис. 4.1.

Конденсаторы С2...С4 должны располагаться вблизи от микросхемы и лучше, если они будут танталовые. Емкость конденсатора С1 выбирается из условия 2000 мкФ на 1 А тока. Микросхемы выпускаются в трех видах конструктивного исполнения корпуса, показанных на рис. 4.2. Вид корпуса задается последними буквами в обозначении. Более подробная информация по данным микросхемам имеется в справочной литературе, например J119.

Такие стабилизаторы напряжения экономически целесообразно применять при токе в нагрузке более 1 А, а также в случае недостатка места в конструкции. На дискретных элементах также можно выполнить экономичный источник питания. Приведенная на рис. 4.3 схема рассчитана для выходного напряжения 5 В и тока нагрузки до 1 А. Она обеспечивает нормальную работу при минимальном напряжении на силовом транзисторе (0,7... 1,3 В). Это достигается за счет использования в качестве силового регулятора транзистора (VT2) с малым напряжением икэ в открытом состоянии. Что позволяет обеспечить работу схемы стабилизатора при меньших напряжениях вход-выход.

Схема имеет защиту (триггерного типа) в случае превышения тока в нагрузке допустимой величины, а также превышения напряжения на входе стабилизатора величины 10,8 В.

Узел защиты выполнен на транзисторе VT1 и тиристоре VS1. При срабатывании тиристора он отключает питание микросхемы DA1 (вывод 7 закорачивается на общий провод). В этом случае транзистор VT3, а значит и VT2 закроются и на выходе будет нулевое напряжение. Вернуть схему в исходное состояние после устранения причины, вызвавшей перегрузку, можно только выключением и повторным включением блока питания.

Конденсатор СЗ обычно не требуется — его задача облегчить запуск схемы в момент включения.

Вернуть схему в исходное состояние после устранения причины, вызвавшей перегрузку, можно только выключением и повторным включением блока питания. Конденсатор СЗ обычно не требуется — его задача облегчить запуск схемы в момент включения. Топология печатной платы для монтажа элементов показана на рис. 4.4 (она содержит одну объемную перемычку). Транзистор VT2 устанавливается на радиатор.

При изготовлении использованы детали: подстроенный резистор R8 типа СПЗ-19а, остальные резисторы любого типа; конденсаторы С1 — К50-29В на 16 В, С2...С5 — К10-17, С5 — К52-1 на 6,3 В. Схему можно дополнить светодиодным индикатором срабатывания защиты (HL1). Для этого потребуется установить дополнительные элементы: диод VD3 и резистор R10, как это показано на рис. 4.5.

Литература: И.П. Шелестов - Радиолюбителям полезные схемы, книга 3.


В связи с этим часть напряжения, поступающая на выход стабилизатора, «остается» на транзисторе, а остальная поступает на выход стабилизатора. Если увеличить напряжение па базе составного транзистора, то он откроется и падение напряжения на нем уменьшится, а напряжение на выходе стабилизатора соответственно увеличится. И наоборот. В обоих случаях величина напряжения на выходе стабилизатора будет близка к уровню напряжения на базе составного транзистора.


Поддержание величины напряжения на выходе стабилизатора на заданном уровне осуществляется за счет того, что часть выходного напряжения (напряжение отрицательной обратной связи) с делителя напряжения R10, R11, R12 поступает на операционный усилитель DA1 (усилитель напряжения отрицательной обратной связи). Выходное напряжение операционного усилителя в этой схеме будет стремиться к такому значению, при котором разница напряжений на его входах была бы равна нулю.

Происходит это следующим образом. Напряжение обратной связи с резистора R11 поступает на вход 4 операционного усилителя. На входе 5 стабилитроном VD6 поддерживается постоянная величина напряжения (опорное напряжение). Разница напряжении на входах усиливается операционным усилителем и поступает через резистор R3 на базу составного транзистора, падение напряжения на котором определяет величину выходного напряжения стабилизатора. Часть входного напряжения с резистора R11 снова поступает на операционный усилитель. Таким образом, сравнение напряжения обратной связи с образцовым и воздействие выходного напряжения операционного усилителя на выходное напряжение стабилизатора происходит непрерывно.

Если напряжение на выходе стабилизатора увеличивается, то увеличивается и напряжение обратной связи, поступающее на вход 4 операционного усилителя, которое становится больше опорного.

Разность этих напряжений усиливается операционным усилителем, выходное напряжение которого при этом уменьшается и закрывает составной транзистор. В результате падение напряжения на нем увеличивается, что вызывает уменьшение выходного напряжения стабилизатора. Этот процесс продолжается до тех пор, пока напряжение обратной связи не станет почти равным опорному (их разница зависит от типа используемого операционного усилителя и может составлять 5...200мВ).

При уменьшении выходного напряжения стабилизатора происходит обратный процесс. Так как напряжение обратной связи уменьшается, становясь меньше опорного, то разница этих напряжений на выходе усилителя напряжения обратной связи увеличивается и открывает составной транзистор, обеспечивая тем самым увеличение выходного напряжения стабилизатора.

Величина выходного напряжения зависит от достаточно большого числа факторов (тока, потребляемого нагрузкой, колебания напряжения первичной сети, колебаний температуры внешней среды и т. п.). Поэтому описанные процессы в стабилизаторе происходят непрерывно, г. е. выходное напряжение постоянно колеблется с очень малыми отклонениями относительно заранее заданного значения.

Источником опорного напряжения, поступающего на вход 5 операционного усилителя DA1, служит стабилитрон VD6. Для увеличения стабильности опорного напряжения напряжение питания на него подается с параметрического стабилизатора на стабилитроне VD5.

Для защиты стабилизатора от перегрузок используется оптопара VU1, датчик тока (резистор R8) и транзистор VT3. Использование в узле защиты оптопары (светодиод и фототиристор, имеющие оптическую связь и смонтированные в одном корпусе) повышает надежность его работы.

При увеличении тока, потребляемого нагрузкой от стабилизатора, увеличивается падение напряжения на резисторе R8, а следовательно, и напряжение, поступающее на базу транзистора VT3. При определенной величине этого напряжения коллекторный ток транзистора VT3 достигает значения, необходимого для зажигания светодиода оптопары VU1.

Излучение светодиода включает тиристор оптопары, и напряжение на базе составного транзистора уменьшается до 1... 1,5В, так как она оказывается подключенной к общей шине через малое сопротивление включенного тиристора. Вследствие этого составной транзистор закрывается, а напряжение и ток на выходе стабилизатора уменьшаются почти до нуля. Падение напряжения на резисторе R8 уменьшается, транзистор VT3 закрывается и свечение оптрона прекращается, но тиристор остается включенным до того момента, пока напряжение на его аноде (относительно катода) не станет меньше 1 В. Это произойдет только в том случае, если будет отключено входное напряжение стабилизатора или замкнуты контакты кнопки SB1.

Коротко о назначении остальных элементов схемы. Резистор R1, конденсатор С2 и стабилитрон VD5 образуют параметрический стабилизатор, служащий для стабилизации напряжения питания операционного усилителя и предварительной стабилизации напряжения питания источника опорного напряжения R5, VD2. Резистор R2 обеспечивает начальное напряжение на базе составного транзистора, повышая надежность запуска стабилизатора Конденсатор СЗ предотвращает возбуждение стабилизатора на низкой частоте. Резистор R3 ограничивает выходной ток операционного усилителя в случае короткого замыкания на его выходе (например, при включении тиристора оптопары).

Цепь R4, С2 предотвращает возбуждение операционного усилителя и выбирается в соответствии с рекомендациями, приводимыми в справочной литературе для конкретного типа операционного усилителя.

Стабилитрон VD7 и резистор R7 образуют параметрический стабилизатор, служащий для поддержания напряжения питания узла защиты на неизменном уровне при изменении выходного напряжения стабилизатора.

Резистор R6 ограничивает коллекторный ток транзистора VT3 на уровне, необходимом для нормальной работы светодиода оптопары. В качестве резистора R6 используется резистор типа С5-5 или самодельный из провода высокого сопротивления (например, спирали от утюга или электроплитки).

Конденсатор С1 снижает уровень пульсаций входного, а С5 - выходного напряжений стабилизатора. Конденсатор С6 блокирует выходную цепь стабилизатора по высокочастотным гармоникам. Нормальный тепловой режим транзистора VT2 при больших токах нагрузки обеспечивается его установкой на радиаторе площадью не менее 100 см.

Стабилизатор обеспечивает плавную регулировку выходного напряжения в пределах 4,5...12 В при выходном токе до 1 А с уровнем пульсаций выходного напряжения не более 15 мВ. Защита от перегрузки срабатывает при выходном токе свыше 1,1 А.

Теперь о замене элементов. Операционный усилитель К553УД1 можно заменить на К140УД2, К140УД9, К553УД2. Транзистор VT1 может быть типа КТ603, КТ608, a VT2 - КТ805, КТ806, КТ908 и т. п. с любыми буквенными индексами. Оптопара - указанного типа с любым буквенным индексом.

Напряжение переменного тока подается на выпрямитель стабилизатора с любого понижающего трансформатора, обеспечивающего выходное напряжение не менее 12 В при токе 1 А. В качестве такого трансформатора можно использовать выходные трансформаторы ТВК-110 ЛМ и ТВК-110 Л1.

Стабилизатор на специализированной микросхеме

Указанные выше трансформаторы можно использовать совместно со стабилизатором напряжения, схема которого приведена на рисунке. Он собран на специализированной интегральной схеме К142ЕН1. Она представляет собой стабилизатор напряжения непрерывного действия с последовательным включением регулирующего элемента.


Достаточно высокие эксплуатационные характеристики, встроенная схема защиты от перегрузки, работающая от внешнего датчика тока, и схема включения/выключения стабилизатора от внешнего источника сигнала позволяют изготовить на его основе стабилизированный источник питания, обеспечивающий выходные напряжения в диапазоне 3...12 В.

Схема самого интегрального стабилизатора напряжения не может обеспечить ток на нагрузке свыше 150 мА, что явно недостаточно для работы некоторых устройств. Поэтому для увеличения нагрузочной способности стабилизатора к ее выходу подключен усилитель мощности на составном транзисторе VT1, VT2. Благодаря этому выходной ток стабилизатора может достигать 1,5 А в указанном диапазоне выходных напряжений.

Напряжение обратной связи, подаваемое на выход интегральной схемы DA1, выполняющей в данной схеме роль усилителя отрицательной обратной связи с внутренним источником опорного напряжения, снимается с резистора R5. Резистор R3 служит датчиком тока узла защиты от перегрузок по току. Резисторы R1, R2 обеспечивают режим работы транзистора VT2 и внутреннего транзистора защиты интегральной схемы DA1. Конденсатор С2 устраняет самовозбуждение интегральной схемы на высокой частоте.

Резистор R3 проволочный, аналогичный описанному ранее. В качестве транзистора VT1 можно использовать транзисторы типа КТ603, КТ608, a VT2 - КТ805, КТ809 и т. п. с любыми буквенными индексами.

Схема:

Стабилизатор напряжения на операционных усилителях(ОУ) иног­да не запускается, т.е. не выхо­дит на режим стабилизации при вклю­чении питания, и напряжение на его выходе остается практически равным нулю. После замены микросхемы ста­билизатор начинает работать нормаль­но. Проверка замененного ОУ показы­вает, что он абсолютно исправен. При повторной установке этого ОУ в рабо­тоспособный стабилизатор указанное выше явление повторяется - стабили­затор снова не запускается. Выше показана схема одного из типовых стабилизаторов, в который наблюда­лось такое явление.

После ряда экспериментов было уста­новлено. что его причиной является напряжение смещения Uсм операцион­ного усилителя, показанное ниже условно в виде источника постоян­ного напряжения:

Входное сопротивление операционного усили­теля изображает резистор Rвх. Напря­жение смешения ОУ, как известно, может быть любой полярности. Допустим, что оно оказалось таким, как показано на рисунке. Тогда в пер­вый момент после включения выходное напряжение стабилизатора, а следо­вательно, и напряжение между входа­ми ОУ равны нулю, и отрицательный полюс источника Uсм оказывается под­ключенным непосредственно к неинвертируюшему входу ОУ. Напряжение на его выходе при этом уменьшается и при достаточно большом значении цсн (для К1УТ531Б, например, оно мо­жет достигать 7,5 мВ) из-за большого коэффициента усиления напряжения выходной каскад ОУ оказывается в сильном насыщении, напряжение на вы­ходе составляет лишь десятые доли вольта. Этого напряжения недостаточ­но для открывания регулирующего транзистора стабилизатора и поэтому он не запускается. Если же окажется, что после замены микросхемы у вновь установленного ОУ значение напряже­ния смещения не слишком велико или его полярность обратна показанной на рис. 2а стабилизатор будет запус­каться нормально.

Избавиться от необходимости трудо­емкого подбора экземпляра ОУ для каждого конкретного стабилизатора можно различными способами. Один из них, например, заключается в применении для запуска стабилизатора де­лителя напряжения с разделительным диодом (рис 2б). Напряжение на ре­зисторе R2 должно удовлетворять сле­дующим неравенствам:



где:
Uвх.мин и Uвх.макс - минимальное и максимальное входные напря­жения стабили­затора;
Uд - максимальное па­дение напряже­ния на диоде V1;
Uсм.макс - максимальное напряжение сме­щения ОУ;
U3 ном - напряжение на входе 3 ОУ (см рис. 1) при но­минальном ре­жиме стабили­затора.

При подключении стабилизатора к источнику питания положительное нап­ряжение с резистора R2 (рис. 2. б) че­рез диод VI подводится к неинвертирующему входу ОУ. Выходное напряже­ние ОУ при этом резко возрастает и ре­гулирующий транзистор стабилизато­ра открывается.

После выхода стабилизатора на но­минальный режим, диод VI закрывает­ся и отключает делитель напряжения от входа ОУ. Для наиболее полного устранения влияния запускающей це­ни на работу стабилизатора диод сле­дует выбирать кремниевый, с малым обратным током.

Практическая проверка подтвердила эффективность применения описанной цепи - стабилизатор с ней запускался безотказно при любых значениях и по­лярности напряжения Uсм. тогда как без нее иногда включения стабилизато­ра не происходило. Влияния запускаю­щей цепи на показатели стабилизатора (коэффициент стабилизации - более. 6000, выходное сопротивление 8 мОм) замечено не было.

Как известно, — для питания светодиодов требуется стабильный ток. Устройство, способное питать светодиоды стабильным током, называется драйвером светодиодов. Эта статья посвящена изготовлению такого драйвера с использованием операционного усилителя.

Итак, главная идея заключается в том, чтобы стабилизировать падение напряжения на резисторе известного номинала (в нашем случае — R 3), включенном в цепь последовательно с нагрузкой (светодиодом). Поскольку резистор включен последовательно со светодиодом, то через них протекает одинаковый ток. Если этот резистор подобран таким образом, что он практически не нагревается, то и сопротивление его будет неизменным. Таким образом, стабилизировав падение напряжения на нём, мы стабилизируем и ток через него и, соответственно ток через светодиод.

Причём же здесь операционный усилитель? Да при том, что одним из его замечательных свойств является то, что ОУ стремится к такому состоянию, когда разность напряжений на его входах равна нулю. И делает он это путём изменения своего выходного напряжения. Если разность U 1 -U 2 положительна — выходное напряжение будет возрастать, а если отрицательна — уменьшаться.

Представим, что наша схема находится в некоем равновесном состоянии, когда напряжение на выходе ОУ равно Uвых. При этом через нагрузку и резистор протекает ток I н. Если по каким либо причинам ток в цепи возрастёт (например, если под действием нагрева уменьшится сопротивление светодиода), то это вызовет увеличение падения напряжения на резисторе R 3 и, соответственно, увеличение напряжения на инвертирующем входе ОУ. Между входами ОУ появится отрицательная разность напряжений (ошибка), стремясь скомпенсировать которую, операционник будет уменьшать выходное напряжение. Он будет делать это до тех пор, пока напряжения на его входах не станут равными, т.е. пока падение напряжения на резисторе R 3 не станет равным напряжению на неинвертирующем входе ОУ.

Таким образом, вся задача свелась к тому, чтобы стабилизировать напряжение на неинверирующем входе ОУ. Если вся схема питается стабильным напряжением U п, то для этого достаточно простого делителя (как на схеме 1). Раз делитель подключен к стабильному напряжению, то и выход делителя тоже будет стабильным.

Расчёты : Для расчётов выберем реальный пример: пусть мы хотим запитать два сверхъярких светодиода подсветки сотового телефона Nokia от напряжения Uп=12В (отличный фонарик в машину). Нам нужно получить ток через каждый светодиод 20 мА и при этом у нас имеется выковырянный с материнской платы сдвоенный операционный усилитель LM833. При таком токе наши светодиоды светят гораздо ярче, чем в телефоне, но сгорать и не собираются, значительный нагрев начинается где-то ближе к 30 мА. Расчёт будем вести для одного канала операционника, т.к. для второго он абсолютно аналогичен.

напряжение на неинвертирующем входе: U 1 =U п *R 2 /(R 1 +R 2)

напряжение на инвертирующем входе: U 2 =I н *R 3

из условия равенства напряжений в состоянии равновесия:

U 1 =U 2 => I н =U п *R 2 /R 3 *1/(R 1 +R 2)

Как выбирать номиналы элементов?

Во-первых, выражение для U 1 справедливо только в том случае, если входной ток операционного усилителя = 0. То есть для идеального операционного усилителя. Чтобы можно было не учитывать входной ток реального ОУ, ток через делитель должен быть по крайней мере раз в 100 больше, чем входной ток ОУ. Величину входного тока можно посмотреть в даташите, обычно для современных ОУ она может составлять от десятков пикоампер до сотен наноампер (для нашего случая input bias current max=1 мкА). То есть ток через делитель должен быть по меньшей мере 100..200 мкА.

Во-вторых, с одной стороны — чем больше R 3 — тем более наша схема чувствительна к изменению тока, но с другой стороны — увеличение R 3 снижает КПД схемы, поскольку резистор рассеивает мощность, пропорциональную сопротивлению. Будем исходить из того, что мы не хотим падения напряжения на резисторе более 1В.

Итак, пусть R 1 =47кОм, тогда с учётом того, что U 1 =U 2 =1В, из выражения для U 1 получим R 2 =R 1 /(U п /U 1 -1)=4,272 -> из стандартного ряда выбираем резистор на 4,3 кОм. Из выражения для U 2 находим R 3 =U 2 /I н =50 -> выбираем резистор на 47 Ом. Проверим ток через делитель: I д =U п /(R 1 +R 2)=234 мкА, что вполне нас устраивает. Мощность, рассеиваемая на R 3: P=I н 2 *R 3 =18,8 мВт, что тоже вполне приемлемо. Для сравнения, — самые обычные резисторы МЛТ-0,125 рассчитаны на 125 мВт.

Как уже было отмечено, описанная выше схема рассчитана на стабильное питание U п. Что же делать, если питание НЕ стабильное. Самым простым решением является замена сопротивления R 2 делителя на стабилитрон. Что важно учитывать в этом случае?

Во-первых, важно чтобы стабилитрон мог работать во всем диапазоне напряжения питания. Если ток через R 1 D 1 будет слишком маленьким — напряжение на стабилитроне будет значительно выше напряжения стабилизации, соответственно, выходное напряжение будет значительно выше требуемого и светодиод может сгореть. Итак, нужно, чтобы при U п min ток через R 1 D 1 был больше или равен I ст min (минимальный ток стабилизации узнаём из даташита на стабилитрон).

R 1 max = (U п min -U ст)/I ст min

Во-вторых, при максимальном напряжении питания ток через стабилитрон не должен быть выше I ст max (наш стабилитрон не должен сгореть). То есть

R 1 min =(U п max -U ст)/I ст max

И, наконец, в-третьих, напряжение на реальном стабилитроне не точно равно U ст, — оно, в зависимости от тока, меняется от U ст min до U ст max . Соответственно, падение на резисторе R 3 тоже изменяется от U ст min до U ст max . Это так же следует учитывать, поскольку чем больше ΔU ст — тем больше ошибка регулирования тока, в зависимости от напряжения питания.

Ну ладно, с небольшими токами разобрались, а что делать, если нам нужен ток через светодиод не 20, а 500 мА, что превышает возможности операционника? Тут тоже всё достаточно просто — выход можно умощнить с помощью обычного биполярного или полевого транзистора, все расчёты при этом остаются без изменений. Единственное очевидное условие — транзистор должен выдерживать требуемый ток и максимальное напряжение питания.

Ну вот, пожалуй и всё. Удачи! И ни в коем случае не выкидывайте старый радиохлам — у нас впереди ещё много прикольных штуковин.