Все о стройке и ремонте

Сорбционная очистка. Сорбционная очистка воды За и против сорбционной очистки сточных вод

Сорбционные методы

Сорбционные методы основываются на поглощении радионуклидов твёрдой фазы по механизмам ионного обмена, адсорбции, кристаллизации и другие .

Сорбция проводится в динамических и статистических условиях. При динамической сорбции фильтрование исходных жидких отходов проводится непрерывно через сорбент, а при статической сорбции проводится временный контакт двух фаз при перемешивании с дальнейшим разделением .

Динамическая сорбция проводится в намывных или насыпных фильтрах. Отличие заключается в том, что в насыпных фильтрах применяют сорбенты в виде зернистого прочного материала; в намывных фильтрах же в качестве сорбента применяют неорганические и органические материалы искусственного и органического происхождения .

Для очистки жидких радиоактивных отходов от радионуклидов применяют сорбенты (иониты) таких типов, как КБ-51-7, КУ-2-8 (сильнокислый катионит), АВ-17-8 (сильноосновный анионит), АН-31 и АН-2ФН (слабоосновные аниониты), вермикулит. Сорбенты выпускают в виде гранул, которые пере применением замачивают в специальном растворе для активации. Все перечисленные сорбенты обладают высокими коэффициентами очистки и хорошими фильтрующими свойствами .

Ионообменные гетерогенные реакции обратимы, что позволяет осуществлять регенерацию сорбента, но обуславливает создание условий для вымывания радионуклидов при хранении отработанного сорбента. Обменная ёмкость сорбента почти вся используется на сорбцию макрокомпонентов - солей, из-за их схожести со свойствами микрокомпонентов. Тогда для того, чтобы протекала сорбция микрокомпонентов (радионуклидов), необходимо проводить предварительное обессоливание. Иначе это будет приводить к частым регенерациям сорбента и, следовательно, повышением стоимости очистки .

Жидкие радиоактивные отходы с высокой засолённостью невыгодно очищать органическими сорбентами из-за того, что при регенерации сорбента требуется 2-2,5 кратный избыток щёлочи и кислоты (идёт удорожание очистки) .

Ситуация предстаёт обратная для радионуклидов, у которых свойства отличны от свойств макрокомпонентов. Многовалентные радионуклиды хорошо сорбируются на катионите в присутствии натрий-ионов. Поэтому находящиеся в жидких радиоактивных отходах натрий-ионы не сорбируются, что приводит к заметному снижению объёмов регенератора, вторичных отходов и частоты регенерации .

Применение синтетических органических сорбентов позволяет удалить из жидких радиоактивных отходов всё радионуклиды в ионной форме. Но такие сорбенты имеют некоторые ограничения по применению, которые перерастают в серьёзные недостатки. При использовании таких сорбентов радионуклиды в молекулярной и коллоидной форме из жидких радиоактивных отходов не удаляются. Также если в жидких радиоактивных отходах имеются коллоиды или органические вещества с крупными молекулами, то сорбент теряет свои свойства и выходит из строя из-за забивки пор .

На практике перед проведением ионного обмена для удаления коллоидных частиц применяют фильтрование на намывных фильтрах. Применение же метода коагуляции вместо фильтрования приводит к образованию больших объёмов отходов. Органические соединения из жидких радиоактивных отходов удаляются ультрафильтрацией. Заметен один из главных недостатков применения ионного обмена для очистки жидких радиоактивных отходов - это необходимость проведения предварительной подготовки таких отходов .

Для очистки высокоактивных жидких отходов синтетические органические сорбенты не применяют в виду их неустойчивости к воздействию высокоактивного излучения. Такое воздействие приводит к разрушению сорбента .

Для обеспечения высокой степени очистки процесс ионообменной очистки проводят в два этапа. На первом этапе из жидких отходов удаляют соли и небольшие количества радионуклидов, а уже на втором этапе проводят непосредственное удаление нуклидов из обессоленных жидких отходов. Регенерацию сорбента проводят противотоком. Чтобы повысить производительность фильтров скорость в начале цикла устанавливается в (90ч100) м/ч, а в конце цикла снижается до значений в (10ч20) м/ч .

Очистка обессоленных отходов даёт возможность применять эффективные фильтры смешанного действия (их регенерация затруднена) и намывные фильтры в виду того, что при очистке таких отходов необходимость в регенерации минимальна. Благодаря смешенной загрузке анионитов и катионитов в формах Н + и ОН-, устраняется противоионный эффект, и это приводит к повышению степени очистки и возможности увеличения скорости фильтрования до 100 м/ч .

Все жидкие радиоактивные отходы содержат в том или ином количестве взвеси, которые обладают склонность к молекулярной и ионообменной сорбции. Также продукты коррозии с гидратированными окислами железа, марганца, кобальта и никеля могут сорбировать микрокомпоненты. В связи с этим предлагается отделять взвеси для заметного улучшения степени очистки жидких отходов .

Для удаления из отходов таких компонентов, как 137 Cs, 99 Sr, 60 Co, используют добавление селективных сорбента, в данном случае - наноглины (монтмориллонит), что обеспечивает 98% очистку от данных компонентов. Сорбцию на селективных компонентах проводят в сочетании с коагуляцией .

Химическое осаждение является одним из эффективных вариантов статической сорбции. К достоинствам химических методов можно отнести низкую стоимость, доступность реагентов, возможность удаления радиоактивных микрокомпонентов в ионной и коллоидной формах, а также переработки засоленных жидких отходов .

Главной особенностью химического осаждения является селективность к различным микрокомпонентам, особенно к 137 Cs, 106 Ru, 60 Co, 131 I, 90 Sr. Коагуляция и умягчение являются методами химического осаждения; при применении этих методов идёт очистка от радионуклидов в коллоидной, ионной и молекулярной формах .

При применении содово-известкового умягчения CaCO 3 и MgOH 2 выпадают в осадок и служат коллекторами для 90 Sr, который удаляется кристаллизацией с CaCO 3 . Также использование данного метода позволяет удалять 95 Zr и 95 Nb .

Цезий (137 Cs) удаляют при помощи осаждения ферроцианидов железа, никеля (самый эффективный), меди и цинка, при этом коэффициент очистки составляет 100 .

Рутений (106 Ru) и кобальт (60 Co) плохо концентрируются в осадках из-за большого количества их химических форм. Удаление рутения производится такими сорбентами, как сульфид кадмия, сульфид железа, сульфид свинца. Очистка от кобальта эффективна на оксигидратах хрома и марганца. Радиоактивный йод 131 I производится соосаждением иодидом меди или серебра .

Химическое осаждение завершается процедурами разделения фаз. При разделении фаз идёт осветление большей части жидких отходов и концентрирование шламов. Разделение фаз производится фильтрованием или воздействием на систему силовым полем, которое может быть гравитационным (отстойники и осветлители) и инерционным (центрифуги). Из-за образования больших объёмов пульп очень высокой влажности отстойники применяют крайне редко, используя для этого осветлители. Осветление в таких аппаратах идёт с большими скоростями и обеспечивает высокую степень очистки .

Для дальнейшего осветления жидкости проводят фильтрование. Применение насыпных фильтров обеспечивает более тонкое фильтрование, такие фильтры имеют большую производительность, а при их регенерации образуется небольшое количество отходов. Насыпные фильтры получили большее распространение из-за простоты и надёжности, не смотря на образование большого количества вторичных отходов при регенерации .

0

Курсовая работа

Сорбционная очистка

Введение …………………………………………………………………………

1 Основы теории сорбции ……………………………………………………….

2 Сорбционные установки ……………………………………………………...

3 Сорбционная очистка активным углем ………………………………………

4 Расчет адсорбционной установки ……………………………………………

4.1 Методика расчета ……………………………………………………………

4.2 Расчет адсорбционной установки ………………………………………….

Заключение ………………………………………………………………………..

Список использованных источников ……………………………………………

Введение

Неуклонный рост водопотребления, связанный с увеличением численности населения и развитием промышленности, вызывает необходимость использования воды из источников, содержащей повышенное количество примесей, что сопряжено с обязательной глубокой предварительной очисткой ее. Особое внимание уделяется подготовке питьевой воды, так как обязательное высокое качество питьевой воды не ставится в зависимость от методов ее обработки. Сорбционную обработку природной воды используют для удаления окрашенных, летучих и токсичных соединений, высокомолекулярных органических веществ естественного и искусственного происхождения.

На сегодняшний день идентифицировано более 700 органических соединений в природных водах, но они составляют лишь 10-20 % от общего количества примесей. Изменение органолептических свойств природных вод возникает и в результате их загрязнения недостаточно очищенными бытовыми и особенно производственными сточными водами, поступающими в поверхностные водоисточники и реже в подземные горизонты. Обработка воды сорбентами из-за универсальности действия является одним из наиболее перспективных методов дезодорации и обесцвечивания воды /1/.

1 Основы теории сорбции

Сорбционная очистка представляет собой процесс поглощения загрязняющих веществ из воды твердыми веществами - сорбентами. Поверхность частиц дисперсной фазы обладает свободной энергией, существование которой можно объяснить следующим образом. Молекулы, атомы или ионы, находящиеся на поверхности раздела фаз, не равноценны тем же молекулам, атомам и ионам, находящимся внутри каждой фазы. Внутри фазы молекулы окружены себе подобными и их силовое поле насыщено симметрично. Поле молекул, лежащих на поверхности, асимметрично: часть его находится вне фазы и не насыщена. Эта ненасыщенность и является источником свободной энергии /2/.

Различают поглощение вещества всей массой жидкого сорбента (абсорбция) и поверхностным слоем твердого или жидкого сорбента (адсорбция). Сорбция, сопровождающаяся химическим взаимодействием сорбента с поглощаемым веществом, называется хемосорбцией.

Сорбционная очистка может применяться самостоятельно и совместно с биологической очисткой как метод предварительной и глубокой очистки. Преимуществами этого метода являются возможность адсорбции веществ многокомпонентных смесей, и, кроме того, высокая эффективность очистки, особенно слабоконцентрированных сточных вод. Сорбционные методы весьма эффективны для извлечения из сточных вод ценных растворенных веществ с их последующей утилизацией и использования очищенных сточных вод в системе оборотного водоснабжения промышленных предприятий /3/.

Под действием поверхностных сил происходит изменение концентрации компонентов в поверхностном слое по сравнению с объемной фазой, т.е. протекает процесс адсорбции (сорбции). Адсорбция может быть положительной, если энергия взаимодействия растворенного вещества с молекулами, находящимися на поверхности адсорбента, выше, чем с молекулами растворителя, и отрицательной, когда наблюдается обратное явление. В случае неэлектролитов сорбируются молекулы вещества, в случае электролитов - их ионы. В процессах очистки природных вод важное значение имеют молекулярная, и ионная сорбции.

Помимо своей главной задачи - извлечения из воды нежелательных примесей - адсорбирующее вещество (адсорбент) выполняет функции катализатора, так как молекулярные и ионные реакции на поверхности раздела протекают обычно значительно быстрее, чем в объеме среды. Это объясняется увеличением концентраций молекул и ионов, их ориентацией, ослаблением связей между отдельными атомами /2/.

Сорбционная очистка сточных вод наиболее рациональна, если в них содержатся преимущественно ароматические соединения, неэлектролиты или слабые электролиты, красители, непредельные соединения или гидрофобные (например, содержащие хлор или нитрогруппы) алифатические соединения. При содержании в сточных водах только неорганических соединений, а также низших одноатомных спиртов этот метод не применим /3/.

Различают два основных вида адсорбции: физическую и химическую. К силам, обусловливающим физическую адсорбцию, относят молекулярные взаимодействия:

Молекул с постоянным диполем (ориентационный эффект);

Молекул с индуцированным диполем (индукционный эффект);

Неполярных молекул (дисперсионный эффект);

Силы, обусловливающие водородную связь.

Физическая адсорбция протекает самопроизвольно и всегда обратима. Количество вещества, адсорбированного на данном участке поверхности в данный момент времени, определяется не только перечисленными силами взаимодействия, но и силами десорбции, возникающими в результате теплового движения частиц. Причем для каждой концентрации адсорбирующего вещества (адсорбтива) и для каждой температуры среды существует состояние адсорбционного равновесия.

Силы, обусловливающие химическую адсорбцию (хемосорбцию), - специфически валентные. В отличие от физической адсорбции хемосорбция обычно необратима. С повышением температуры среды хемосорбция, требующая значительной энергии активации, возрастает. Соединения, образующиеся при хемосорбции на поверхности раздела фаз, нельзя рассматривать как новое вещество, так как, несмотря на возникновение химических связей, поверхностные атомы адсорбента продолжают сохранять связь с остальными его атомами.

Провести резкую границу между физической и химической адсорбцией во многих случаях довольно трудно: адсорбция одних и тех же веществ на одном и том же адсорбенте в одних условиях может иметь физический, в других - химический характер. В частности, повышение температуры снижает физическую, но увеличивает химическую адсорбцию.

Количество адсорбированного вещества выражают по отношению к 1 см 2 поверхности адсорбента или к 1 г адсорбента. В первом случае это количество обозначается Г (моль/ см 2), во втором - Г (моль/г).

К настоящему времени предложено множество различных теорий адсорбции. Отметим лишь, что ни одна из существующих теорий не является универсальной вследствие специфического характера адсорбции в разных условиях. Для решения практических задач, связанных с очисткой воды от дисперсных и истинно растворенных примесей, вполне достаточно воспользоваться представлениями Лэнгмюра о мономолекулярной адсорбции, сохраняющими свое значение до настоящего времени.

В своей теории, развитой еще в 1915 г., Лэнгмюр исходил из следующих предположений:

Адсорбция происходит не на всей поверхности сорбента, а лишь на отдельных ее активных участках-ребрах, выступах;

Каждый активный участок, адсорбируя молекулу адсорбтива, становится уже не способным к дальнейшей адсорбции. Таким образом, на поверхности адсорбента образуется лишь мономолекулярный слой адсорбтива;

Адсорбированные молекулы удерживаются на активных участках только в течение определенного времени. В результате флуктуации (непрерывного колебания) энергии молекулы могут оторваться от этих участков, и их место занимают новые молекулы;

Взаимодействием между адсорбированными молекулами можно пренебречь.

На степень адсорбции сильное влияние оказывают свойства адсорбента, адсорбтива и среды и, в частности, интенсивность поля действующих молекулярных сил - полярность. В качестве количественной характеристики полярности твердых частиц, погруженных в жидкость, используют величину удельной свободной энергии на поверхности частиц - поверхностное натяжение.

В соответствии с правилом Ребиндера адсорбция вещества будет происходить, если полярность их лежит между полярностью среды и адсорбента. Следовательно, чем больше разность полярностей между растворяемым веществом и раствором, т.е. чем менее растворимо вещество, тем лучше оно будет адсорбироваться. Действительно, неполярные гидрофобные вещества (в частности, активный уголь) хорошо адсорбируют поверхностноактивные вещества, что широко используется в водоподготовке. С увеличением молекулярного веса адсорбтива адсорбция возрастает. Этим объясняется в частности, хорошая адсорбция красителей.

Вещества пористые и с шероховатой поверхностью адсорбируют сильнее. Поэтому аморфные адсорбенты всегда эффективнее кристаллических. Чем уже поры адсорбента и чем крупнее молекулы адсорбтива, тем меньше и медленнее адсорбция. Для компенсации недостаточной скорости диффузии и ускорения наступления адсорбционного равновесия часто применяют перемешивание жидкости. Адсорбция электролитов, имеющая наиболее важное значение в водных растворах, резко отличается от молекулярной адсорбции. Участки поверхности адсорбента, несущие заряд, как правило, адсорбируют противоположно заряженные ионы, а из ионов разной валентности сильнее адсорбируются многовалентные. Сказывается и влияние природы ионов. Так, из ионов одинаковой валентности лучше адсорбируются ионы большего радиуса: они сильнее поляризуются и обладают меньшей гидратацией, что увеличивает силы их притяжения к поверхности. По способности адсорбироваться ионы могут быть расположены в следующие ряды, называемые лиотропными:

Анионы < < < < < < … <

Катионы < < < < < < < … <

Первостепенное практическое значение при коагулировании водных примесей, умягчения и обессоливании воды имеет обменная адсорбция, в ходе которой адсорбент, поглощая определенное количество каких-либо ионов, выделяет одновременно в раствор эквивалентное количество других ионов того же знака, вытесненных с поверхности. Происходит обмен ионов.

Обменная адсорбция обладает следующими особенностями:

К обмену способны только определенные ионы;

Адсорбция не всегда обратима;

Адсорбция протекает медленнее, чем адсорбция неэлектролитов;

При обменной адсорбции может происходить изменение рН среды, когда обмениваемыми ионами являются Н + или ОН - .

Скорость адсорбции практически всегда определяется скоростью диффузии, и часто 90-95% адсорбтива связывается адсорбентом в течение первых двух-трех секунд.

Говоря о свойствах активного угля как сорбента, употребляется термин «гидрофобное вещество». По степени прочности связи между дисперсной фазой и дисперсионной средой все дисперсные системы делят на лиофобные и лиофильные или для случая, когда дисперсионной средой является вода, - на гидрофобные и гидрофильные.

На гидрофильных поверхностях преобладают ненасыщенные атомные, ионные или полярные связи, что и обусловливает взаимодействие поверхностей с молекулами воды или их ассоциатами. На гидрофобных поверхностях преобладают насыщенные связи, поэтому они слабо взаимодействуют с водой.

Гидрофобные системы характеризуются высоким поверхностным натяжением (σ>σ m), а потому мало гидратированы и обладают резко выраженной границей раздела фаз. Степень их дисперсности зависит от условий образования и стабилизации. Гидрофильные системы, напротив, обладают малым поверхностным натяжением (σ<σ m) и проявляют сродство с водой. Четкая граница раздела фаз отсутствует, а дисперсность частиц не является случайной величиной, зависящей от условий образования и стабилизации, а определяется природой обеих фаз.

К гидрофобным системам относят золи металлов, к гидрофильным - желатин, агар-агар, крахмал. Промежуточный тип систем составляют золи кремнекислоты, гидроокиси железа, алюминия, хрома и других металлов. Степень гидрофильности этих систем зависит от рН среды.

Важнейшая особенность лиофобных золей и суспензий, определяющая всю сумму наблюдаемых поверхностных явлений, состоит в существовании двойного электрического слоя ионов и скачка потенциала на границе раздела фаз. Причинами возникновения двойного электрического слоя являются разница в диэлектрических свойствах материала среды и дисперсной фазы, специфические молекулярные силы, обусловливающие избирательную адсорбцию ионов из раствора, или ионизации поверхностных молекул вещества самой дисперной фазы.

Распределение ионов вблизи поверхности раздела определяется действием противоположно направленных сил: сил молекулярного притяжения, удерживающих ионы у поверхности, сил электростатического притяжения или отталкивания и диффузионных сил, стремящихся выровнять концентрацию ионов в объеме среды.

Частицу с окружающим ее плотным слоем ионов называют гранулой, а с двойным слоем - мицеллой. Построение мицеллы представляют следующим образом (рисунок 1):

На поверхности Fe(OH) 3 адсорбируются ионы Н + ;

Противоионы Cl - , связанные в плотном слое, уменьшают заряд частицы, но не нейтрализуют его полностью. Знак заряда гранулы определяется ионами Н + , находящимися в избытке;

Противоионы Cl - , имеющиеся в диффузном слое, нейтрализуют положительный заряд гранулы и делают мицеллу нейтральной.

В действительности строение гранул гораздо сложнее. Из-за неоднородности материала самого ядра, шероховатости поверхности, неравномерности распределения адсорбционных центров и наличия дефектов и микропримесей в кристаллах поверхность раздела электрически неоднородна /2/.

2 Сорбционные установки

Процессы сорбции избирательны и обычно обратимы. Благодаря их обратимости становится возможным выделение поглощенных веществ (десорбция).

В качестве сорбентов практически могут служить все мелкодисперсные твердые вещества, имеющие развитую поверхность, - активный уголь, зола, торф, опилки, разные глины, доменные шлаки и др.

Наиболее эффективными сорбентами являются активные угли (АУ) различных марок /2/. Пористость этих углей составляет составляет 60-75 %, а удельная площадь поверхности 400-900 м 2 /г. Адсорбционные свойства активированных углей в значительной мере зависят от структуры пор, их величины, распределения по размерам /3/. Активные угли являются пористыми материалами, поры которых по своему размеру могут быть подразделены на четыре вида: макропоры размером 1000-20000 Å, переходные поры 40-1000 Å, супермикропоры - 16-40 Å и микропоры - не более 16 Å. Эффективность АУ обусловливается наличием в них микропор, а также в определенной степени супермикропор /2/. Макропоры и переходные поры играют, как правило, роль транспортирующих каналов, а сорбционная способность активированных углей определяется в основном микропористой структурой. Распространенные органические вещества, имеющие размеры частиц менее 0,001 мкм, заполняют объем микропор сорбента, полная емкость которых соответствует поглощающей способности сорбента /3/.

В настоящее время синтезировано достаточно много полимерных пористых материалов. В процессе производства структура их пор может направленно изменяться в очень широких пределах. Для адсорбционных процессов в водной среде синтезированы полимерные пористые материалы на основе стирола и дивинилбензола - полисорбы. Технологические свойства

Растворенные органические вещества заполняют объем микропор сорбента, полная удельная вместимость, (см 3 /г), которых соответствует поглощающей способности сорбента, поэтому объем микропор является одной из важнейших характеристик и проводится для соответствующих марок активных углей /2/.

Активность сорбента характеризуется количеством поглощаемого вещества на единицу объема или массы сорбента (кг/м 3 , кг/кг) /3/.

Сорбция может проходить в статических либо динамических условиях. Сорбция в статических условиях осуществляется интенсивным перемешиванием обрабатываемой воды с сорбентом в течение определенного времени и последующего отделения сорбента от воды в результате отстаивания или фильтрования и т.п.

Процесс проводится в одну, но чаще в несколько ступеней. Одноступенчатую очистку применяют при небольших исходных концентрациях загрязнений, когда требуется мало сорбента, либо в тех случаях, когда сорбент дешев и легко доступен.

При многоступенчатой сорбции за счет введения новых порций сорбента постоянно поддерживается определенная разность концентраций извлекаемого вещества в воде и сорбенте, что увеличивает скорость сорбции и требует меньшего расхода сорбента, чем при очистке в одну ступень.

Многоступенчатая сорбция осуществляется с последовательным или противоточным введением сорбента. В первом случае сорбент вводится отдельными порциями на каждой ступени обработки, во втором чистый сорбент вводится только раз на последней ступени и затем перекачивается из каждой последующей ступени на предыдущую.

1 - подача сточной воды; 2 - ввод сорбента; 3 - смесители; 4 - отстойники; 5 - отвод отработанного сорбента.

Рисунок 1 - Трехступенчатая сорбционная установка с последовательным введением сорбента

Сорбция в динамических условиях осуществляется фильтрованием сточных вод через загрузку сорбента. Такой способ имеет большие технологические, эксплуатационные и экономические преимущества по сравнению с сорбцией в статических условиях. Сорбция в динамических условиях позволяет более полно использовать емкость сорбента. По мере прохождения очищаемой сточной воды через загрузку концентрация вещества в ней снижается. Так же постепенно, начиная от входного сечения, увеличивается насыщенность сорбента. Через некоторое время сначала первый слой, а затем и последующие слои загрузки будут полностью насыщены и перестанут извлекать из воды загрязняющие вещества. Таким образом, возникает фронт отработки угля, который постепенно смещается вглубь загрузки /2/.

В соответствии с этим различают статическую и динамическую активность сорбента. Статическая активность сорбента характеризуется максимальным количеством вещества, поглощенного единицей объема или массы сорбента к моменту достижения равновесия при постоянных температуре жидкости и начальной концентрации вещества; динамическая активность сорбента - максимальным количеством вещества, поглощенного единицей объема или массы сорбента до момента появления сорбируемого вещества в фильтрате при пропуске сточной воды через слой сорбента. Динамическая активность в промышленных адсорберах составляет 45-90 % статической.

В зависимости от области применения метода сорбционной очистки, места расположения адсорберов в общем комплексе очистных сооружений, состава сточных вод, вида и крупности сорбента и др. назначают ту или иную схему сорбционной очистки и тип адсорбера. Так, перед сооружениями биологической очистки применяют насыпные фильтры с диаметром зерен сорбента 3-5 мм или адсорбер с псевдоожиженным слоем сорбента с диаметром зерен 0,5-1 мм. При глубокой очистке производственных сточных вод и возврате их в систему оборотного водоснабжения применяют аппараты с мешалкой и намывные фильтры с крупностью зерен сорбента 0,1 мм и менее.

Наиболее простым является насыпной фильтр, представляющий собой колонну с неподвижным слоем сорбента, через который фильтруется сточная вода. Скорость фильтрования зависит от концентрации растворенных в сточных водах веществ и составляет 1-12 м/ч; крупность зерен сорбента - 0,8-5 мм. Наиболее рациональное направление фильтрования жидкости - снизу вверх, так

как в этом случае происходит равномерное заполнение всего сечения колонны и относительно легко вытесняются пузырьки воздуха или газов, попадающих в слой сорбента вместе со сточной водой.

В колонне слой зерен сорбента укладывают на беспровальную решетку. Обычно используют решетки с отверстиями диаметром 5-10 мм и шагом 10-20 мм, на которые укладывают поддерживающий слой мелкого щебня и крупного гравия высотой 400-500 мм, предохраняющий зерна сорбента от проваливания в подрешеточное пространство и обеспечивающий равномерное распределение потока жидкости по всему сечению. Сверху слой сорбента для предотвращения выноса закрывают сначала слоем гравия, затем слоем щебня и покрывают решеткой (т.е. в обратном порядке).

Фильтры с неподвижным слоем сорбента применяют при регенеративной очистке цеховых сточных вод с целью утилизации выделенных относительно чистых продуктов. Процесс десорбции осуществляется с помощью химических растворителей или пара /3/.

Обычно сорбционная установка включает несколько (3-5) последовательно расположенных фильтров, что позволяет выключать на регенерацию головной фильтр лишь после того, как его загрузка достигнет предельного насыщения, и он перестанет извлекать из воды загрязняющее вещество. Это обстоятельство имеет большое экономическое значение, поскольку можно реже регенерировать сорбент. После загрузки фильтра свежим сорбентом он переключается в конец установки.

Рассмотрим в качестве примера адсорбционную установку для очистки сточных вод от нитропродуктов. Эта установка (рисунок 2) состоит из двух

адсорбционных колонн, работающих попеременно. Активированный уголь марки КАД загружен на подстилающий слой из кокса, уложенного на деревянную решетку: сверху уголь покрыт слоем кокса и закрыт второй деревянной решеткой. Высота слоя угля около 5 м. сточные воды с содержанием 100-400 мг/л нитропродуктов поступает в емкость, из которой их подают в напорный бак, а затем через регулятор потока в нижнюю часть одной из колонн. Нагрузка составляет 3 м 2 /(м·ч). Первые порции очищенной воды содержат 2-4 мг/л нитропродуктов, затем концентрация начинает постепенно повышаться. После повышения концентрации нитропродуктов в сточных водах до 20 мг/л колонну останавливают на регенерацию.

1 - сборник сточных вод; 2 - напорная емкость; 3 - очищенная вода; 4 - колонна; 5 - конденсатор; 6 - сборник экстракта; 7 - конденсат; 8 - острый пар.

Рисунок 2 - Схема установки для сорбции из воды нитропродуктов активированным углем

Отработанный уголь регенерируют растворителями с последующей отгонкой следов растворителя острым паром. Регенерацию растворителя осуществляют до тех пор, пока концентрация нитропродуктов в нем не составит 20-50 г/л. Затем его заменяют свежей порцией; объем первой порции растворителя равен 3-4 объемам активированного угля в колонне. В качестве растворителей применяют бензол, метанол, этанол, метиленхлорид. Отработанный растворитель (экстракт) направляют на перегонку.

Регенерированный растворитель возвращают в цикл очистки, а нитропродукты - на использование в основном технологическом процессе /2/.

Отработавший сорбент выгружают из адсорбера насосом, гидроэлеватором, эрлифтом и шнеком при относительном расширении загрузки на 20-25 %,

создаваемом потоком воды со скоростью 40-45 м/ч. В напорных адсорберах допускается предусматривать выгрузку сорбента под давлением не менее 0,3 МПа. Металлические конструкции, трубопроводы, арматура и емкости, соприкасающиеся с влажным сорбентом, должны быть защищены от коррозии.

При относительно высоком содержании в сточной воде мелкодиспергированных взвешенных частиц, заиливающих сорбенты (не более 1 г/л при гидравлической крупности не более 0,3 мм/с), а также в случае, если

равновесие устанавливается медленно, рационально применять процесс с псевдоожиженным слоем сорбента. Псевдоожижение слоя наступает при повышении скорости потока сточной воды, проходящей снизу вверх, до такой величины, при которой зерна расширившегося слоя начинают интенсивно и беспорядочно перемещаться в объеме слоя, сохраняющего постоянную для данной скорости высоту.

В настоящее время в основном применяют цилиндрические одноярусные адсорберы. Такой аппарат представляет собой колонну высотой около 4 м. Верхняя часть ее соединена с царгой, имеющей диаметр, в 1,5-2 раза больший диаметра основной колонны. В зависимости от диаметра колонны коническое днище имеет центральный угол 30-60°. Непосредственно над коническим днищем устанавливается распределительная решетка с отверстиями 5-10 мм и шагом отверстий около 10 мм, на которую загружается активированный уголь с размером частиц 0,25-1 мм и преимущественным содержанием фракции 0,5-0,75 мм. Высота неподвижного слоя угля составляет 2,5-2,7 м.

1 - трубопровод для подачи сточной воды; 2 - цилиндрическая колонна; 3 - центральная труба с диффузором; 4 - царга; 5 - трубопровод для подачи сорбента; 6 - трубопровод для выпуска обработанной сточной воды; 7 - сгуститель сорбента; 8 - трубопровод для выпуска отработанного сорбента; 9 - распределительная решетка.

Рисунок 3 - Цилиндрический одноярусный адсорбер

В нижнюю часть аппарата через центральную трубу, заканчивающуюся диффузором под решеткой, либо через боковой патрубок тройника, подсоединенного к конусному днищу, поступает сточная вода со скоростью, обеспечивающей относительное расширение слоя 1,5-1,6. Уголь равномерно подается в аппарат из бункера с автоматическим дозатором. Сорбент в виде 5-20 %-ной суспензии поступает в верхнюю расширенную часть той же центральной трубы, по которой в колонну адсорбера подается сточная вода. В

трубе эта вода смешивается с углем. Образовавшаяся суспензия поступает через диффузор под решетку, продавливается через ее отверстия и задерживается в нижней части псевдоожиженного слоя угля, который находится в колонне. Обработанная сточная вода отводится в кольцевой желоб верхней части царги.

При высоте адсорберов 0,5-1 м следует устанавливать секционирующие решетки с круглой перфорацией 10-20 мм и долей живого сечения 10-15 %, оптимальное число секций три-четыре. Скорость восходящего потока воды в адсорберах надлежит принимать 30-40 м/ч при крупности частиц сорбента 1-2,5 мм и 10-20 м/ч при крупности частиц 0,25-1 мм.

Сорбционная очистка может быть регенеративной, когда извлеченные вещества утилизируются, или деструктивной, когда извлеченные вещества уничтожаются. В зависимости от назначения сорбционной очистки применяются различные методы регенерации сорбента или его уничтожения.

Для извлечения сорбированных веществ могут быть применены экстрагирование органическим растворителем, изменение степени диссоциации слабого электролита в равновесном растворе, отгонка адсорбированного

вещества с водяным паром, испарение адсорбированного вещества током инертного газообразного теплоносителя. В отдельных случаях осуществляют химические превращения сорбированных веществ с последующей десорбцией.

Легколетучие органические вещества (бензол, нитробензол, толуол, этиловый спирт) десорбируют воздухом, инертными газами, перегретым паром. При этом температура воздуха должна быть 120-140 °С, перегретого пара - 200-300 °С, а дымовых или инертных газов - 300-500 °С. Расход пара на отгонку легколетучих веществ из активированного угля составляет 3-12 кг на 1 кг сорбированного вещества. В качестве десорбентов могут использоваться низкокипящие, легко перегоняющиеся с водяным паром органические растворители: бензол, бутилацетат, дихлорэтан, толуол и др. Процесс десорбции осуществляется при нагревании или на холоде, затем растворитель отгоняется из сорбента острым водяным паром или другим теплоносителем.

При деструктивной очистке обычно применяют термические или окислительные методы. При применении термического метода (рисунок 4) следует учитывать потери сорбента (так, потери активированного угля составляют 5-10 %).

I-IV - трубопроводы для подачи воздуха, пара, воды и природного газа; V - трубопровод для выпуска отходов; 1 - сборник отработанного угля; 2 - дозатор; 3 - регенератор; 4 - камера сгорания; 5 - сепаратор; 6 - шнек; 7 - фильтр; 8 - пневматический транспортер; 9 - сборник регенерированного угля.

Рисунок 4 - Установка термической регенерации высокодисперсного активированного угля /3/

3 Сорбционная очистка активным углем

Для адсорбционной очистки воды от примесей, ухудшающих органолептические показатели, применяются порошкообразный и гранулированный активированный уголь, углеродные волокнистые материалы, активированный антрацит и неуглеродные адсорбенты (глинистые породы, цеолиты и др.).

Наиболее перспективным адсорбентом является активированный уголь. Первые попытки использования его на отечественных водопроводах относятся к 1930-1940 гг. Так, на Рублевском водопроводе в 1936-1939 гг. был применен торфяной активированный уголь для устранения из воды землистого запаха. Доза составляла 10-15 мг/л. Однако из-за низкого качества угля результаты опытов были неудовлетворительными. Применение активированного угля позволяет устранить почти все привкусы и запахи из природной и обессоленной воды, значительно улучшить технологические показатели обработки воды другими реагентами и, наконец, идентифицировать обеззараживание в результате сорбции простейших, бактерий, вирусов и других микроорганизмов /4/.

Сорбционная доочистка биологически очищенных сточных вод активным углем применяется перед повторным их использованием для ирригационных, технологических и прочих нужд, перед узлом обессоливания или деаммонизации, а также при сбросе стоков в водоемы. В процессе адсорбционной доочистки активный уголь удаляет из воды биохимически неокисленные органические вещества, микроколичества ионов тяжелых металлов, радиоактивных изотопов, хлорида ртути, солей серебра, хлорида золота, остаточный хлор, бактериальные и другие загрязнения /2/.

Активированный уголь изготовляют из углеродсодержащих материалов: угля, антрацита, древесины, торфа, полимеров, отходов пищевой, целлюлозно-бумажной и других отраслей промышленности /4/.

Марку активного угля выбирают с учетом структуры пор, прочности, зольности, рН водной вытяжки, насыпной плотности и фракционного состава. По фракционному составу угли промышленного изготовления классифицируются на два типа: гранулированные (размеры частиц более 1 мм) и порошковые (размеры частиц менее 0,25 мм) /2/.

Размолотое до размеров 10-100 мкм и отсортированное сырье карбонизируют обычно в барабанных печах без доступа воздуха при температуре 700-800 °С, в результате чего из угля выделяются летучие соединения, он уплотняется, приобретает прочность и макропористую структуру.

Активируют уголь газами (О 2 , СО 2 , SO 2) и солями (ZnCl 2 , K 2 CO 3 , K 2 S и др.) при температуре 750-1000 °С. Чаще других применяют комбинированный парогазовый способ с использованием топочных газов состава Н 2 О + СО 2 + О 2 . Неорганические активирующие добавки из угля вымывают.

Размеры частичек гранулированного активированного угля составляют 0,07-7,0, порошкообразного - 0,07-0,12 мм. Площадь их поверхности колеблется в пределах 450-1800 м 2 /г. По способу производства активированные угли делятся на дробленые (БАУ, ДАК, КАД) и собственно гранулированные (АГ-3, АГ-М, СКТ) /4/.

При доочистке от нефтепродуктов, ПАВ, детергентов, красителей и других веществ с крупными молекулами рекомендуется применять угли марок БАУ, ДАК, ОУ; для снижения общего содержания органических веществ используют микропористые угли марок АГ-3, АГ-5, КАД /2/.

Высокой сорбционной емкостью и повышенной по сравнению с активированнм углем удельной поверхностью (до 2000 м 2 /г) обладают разрабатываемые новые сорбенты - углеродные волокнистые материалы. Их получают из полимерных гидрацеллюлозных и полиакрилонитриловых волокон термообработкой в потоке благородных газов при 600-1050 °С. Для увеличения сорбционной емкости в процессе обработки сырья к нему добавляют соли тяжелых и редкоземельных металлов.

Все шире применяются для обесцвечивания воды, удаления из нее неорганических примесей и особо токсичных хлорорганических примесей и гербицидов неуглеродные сорбенты - глинистые породы, цеолиты и др. Увеличить пористость, улучшить прочность и водостойкость этих материалов можно прокаливанием их с хлоридом и карбонатом натрия при 1000 °С.

Для дезодорации и обесцвечивания питьевой воды на водонапорных очистных станциях применяется в основном активированный уголь, сорбционные свойства которого зависят от его пористости. Адсорбционные свойства углей в основном обусловлены микропорами, составляющими примерно 90 % всей удельной поверхности активированного угля. На ней и протекают процессы адсорбции, в основе которых лежит взаимодействие энергетически ненасыщенных атомов углерода с молекулами адсорбируемых веществ. Лучше сорбируются вещества в молекулярной форме, хуже в ионной. Способность органических веществ к сорбции возрастает в ряду: гликоли < спирты < кетоны < сложные эфиры < альдегиды < недиссоциированные кислоты < ароматические соединения. Способность к сорбции возрастает с ростом молекулярной массы органических веществ, мицеллярной массы коллоидов и температуры сорбатов.

В присутствии механических примесей сорбционная емкость активированного угля снижается. Поэтому поступающая на обработку активированным углем вода должна содержать не более 10 мг/л взвешенных веществ.

Аналогично влияют продукты гидролиза Al 2 (SO 4) 3 . В концентрации 10-50 мг/л они уменьшают сорбционную емкость гранулированного активированного угля на 20-35 %. Ухудшается кинетика сорбции и снижается динамическая емкость также при насыщении активированного угля солями и оксидами железа. Последние, осаждаясь на угле, закрывают поры и затрудняют процесс регенерации. По этой причине часто при добавлении угольной суспензии совместно с коагулянтом до отстойников ее требуется несколько больше, чем при добавлении перед фильтрами.

Успешность применения адсорбционных методов зависит не только от соблюдения оптимальных условий процесса, но и от наличия экономически выгодных адсорбентов, обеспечивающих преимущественное извлечение из воды нежелательных органических веществ.

В связи с широким внедрением комбинированных методов дезодорации воды кроме активированного угля используют различные окислители (озон, хлор, оксид хлора (IV), перманганат калия), что позволяет повысить эффект очистки воды и сократить расход сорбентов и реагентов.

Порошкообразный активированный уголь применяют при углевании воды, гранулированный - при фильтровании через угольные фильтры.

Углевание воды не требует больших капитальных затрат, но характеризуется повышенным расходом угля.

Применение угольных фильтров позволяет снизить дозу расходуемого угля, саморегулировать процесс, улучшить условия труда, однако требует высоких капитальных затрат, тщательного осветления воды, большого ее расхода на промывку и громоздкого реагентного хозяйства для регенерации угля.

Для подготовки хозяйственно-питьевой воды углеванием используют в основном древесные угли марок БАУ, ДАК, ОУ, а также уголь АГ-3. Угольные фильтры чаще всего загружают углем марки КАД, АГ-3 и АГ-М.

Доза порошкообразного активированного угля для углевания воды зависит от местных условий, времени года, веществ, обусловливающих запахи и привкусы воды, качества угля, способа его приготовления и может колебаться от 0,1 до 200 мг/л. Дозу порошкообразного активированного угля перед фильтрами для устранения из воды запахов и привкусов следует принимать в зависимости от их интенсивности до 5 мг/л.

Место ввода порошкообразного активированного угля в схеме обработки воды должно обеспечивать максимальную диффузию сорбируемых веществ к активной поверхности угля и необходимую длительность контакта.

Обработка воды порошкообразным активированным углем включает такие процессы, как приготовление угольной суспензии и ее дозирование, смешение отдозированной суспензии с обрабатываемой водой, поглощение из воды загрязнений, осаждение частичек угля в отстойнике.

Одним из основных этапов обработки воды углем является подготовка угольной суспезии необходимой концентрации. Подавать уголь в воду можно в виде сухого порошка (сухое дозирование) или в виде раствора или суспензии заданной концентрации (мокрое дозирование).

Сухое дозирование обладает преимуществами перед мокрым, это: отсутствие растворных и расходных баков, уменьшение производственных площадей, экономия реагентов, возможность улучшения условий автоматизации процесса, более высокие технико-экономические показатели. Недостатком способа является образование пыли и частое засорение дозирующих устройств.

Схема установки для сухого дозирования порошкообразного активированного угля приведена на рисунке 5.

1 - вакуум-насос; 2 - вакуум-линия; 3 - мешок с пылевидным АУ; 4 - гибкий шланг; 5 - вакуум-бункер; 6 - расходный бункер; 7 - дозатор АУ; 8 - водопровод; 9 - гидроэлеватор; 10 - подача угольной суспензии в воду.

Рисунок 5 - Схема установки для сухого дозирования порошкообразного активированного угля

Рисунок 6 - Схема дозатора активированного угля конструкции НИКТИ ГХ МКХ УССР

Дозатор порошкообразного активированного угля (рисунок 6) состоит из бункера 3, который во избежание сводообразования встряхивается эксцентриком с частотой 1000 колебаний в минуту. Приводом эксцентрика служит электродвигатель 14 с кривошипно-шатунным механизмом. Бункер смонтирован

на раме 10 с помощью пружин 2 и соединен с корпусом зубчатого барабанного питателя 6 брезентовым мехом 4, предотвращающим его вибрацию. Расходный бункер может соединяться с запасными емкостями соединительным патрубком 1.

Дозирование порошкообразного активированного угля регулируется изменением ширины щелей между корпусом и зубчатым барабанным питателем (в пределах 1-25 мм), перекрываемых заслонкой 5, и изменением количества оборотов барабанного питателя (в пределах 17,5-70 об/мин) с помощью цепного вариатора 13, соединенного с червячным редуктором 11. Приводом вариатора, редуктора и питателя служит электродвигатель 12.

Отдозированный уголь ссыпается в смывное устройство 7, где смачивается водой, поступающей из водопровода 9 через сопла под давлением 0,07-0,20 МПа, перемешивается, засыпается в гидроэлеватор 8, откуда подается в обрабатываемую воду. При давлении перед гидроэлеватором не менее 0,4 МПа угольная суспензия может подаваться на высоту до 6 м.

Расчетная производительность дозатора активированного угля составляет от 2,3 до 340 кг/ч.

При мокром дозировании активированного угля его предварительно смешивают с водой барботированием воздухом или механическими мешалками.

Дозируют суспензию угля насосами-дозаторами типа НД, дозаторами типа ДИМБА и др. Транспортируют угольную суспензию гидроэлеваторами (рисунок 7).

1 - гладкий резиновый рукав для подачи воды под напором в гидроэлеватор; 2 - приемное окно; 3 - сопло; 4 - смесительная камера; 5 - диффузор; 6 - гладкий резиновый армированный рукав для подачи угольной пульпы в баки.

Рисунок 7 - Схема гидроэлеватора

Основная масса введенного активированного угля осаждается совместно с коагулянтом в отстойниках, однако некоторая часть его поступает на фильтры, что приводит к сокращению межпромывочных периодов на 15-20 %.

Наиболее совершенная схема дозирования угольной суспензии представлена на рисунке 8.

1 - мешок с АУ; 2 - вакуум-насос; 3 - гибкий шланг; 4 - вакуум-линия; 5 - вакуум-бункер; 6 - расходный бункер; 7 - дозатор АУ; 8 - водопровод; 9 - гидроэлеватор; 10 - пульпопровод; 11 - бак угольной суспензии; 12 - подача воздуха; 13 - насос-дозатор; 14 - подача угольной суспензии в воду.

Рисунок 8 - Схема установки для мокрого дозирования порошкообразного активированного угля

Эффективным является применение адсорберов со взвешенным слоем непрерывно обновляющегося адсорбента.

Конструкция адсорбера со взвешенным слоем активированного угля (рисунок 9) принципиально не отличается от конструкции осветлителей. Установка снабжена выносным углеуплотнителем 1 с принудительным отсосом адсорбента. Последний подается в установку вместе со струей осветленной воды, поступающей на очистку через центральную трубу 2 и диффузор 5. Пройдя распределительные решетки 4, уголь задерживается взвешенным слоем, а очищенная вода отводится из верхней части установки через дырчатую затопленную кольцевую трубу 3.

Рисунок 9 - Схема адсорбера со взвешенным слоем активированного угля

Применение принципа взвешенного слоя для адсорбции загрязняющих воду органических веществ, имеющих запах, позволяет решить задачу непрерывной смены адсорбента в установке, упрощает регенерацию отработанного активированного угля. Кроме того, при этом можно избежать заиливания слоя адсорбента и применять мелкие фракции активированного угля (0,2-0,5 мм), что значительно сокращает время достижения адсорбционного равновесия.

Адсорбция может осуществляться как в одном адсорбере, так и в блоке, состоящем из двух или трех последовательно включенных аппаратов. В этом

случае активированный уголь переводится из одного адсорбера в другой против движения воды. Уголь, выгруженный из углеуплотнителя первого (по движению воды) адсорбера, подвергается термической регенерации.

Вместо блока адсорберов можно применять двухъярусный противоточный адсорбер (рисунок 10).

Рисунок 10 - Схема двухъярусного противоточного адсорбера системы Л.А. Кульского

Суспензия активированного угля через центральную трубу 5 подается под распределительную решетку второго яруса адсорбера, где смешивается с частично обработанной водой, выходящей из камеры первого яруса 2 через горловину 3. Над решеткой в камере 4 активированный уголь образует взвешенный слой. Очищенная вода отводится из верхней части адсорбера через кольцевой желоб. Неочищенная вода поступает в нижнюю часть адсорбера через эжектор 1, который подсасывает избыток активированного угля из камеры второго яруса по переливной трубе 6.

Вода, смешенная в эжекторе с частично насыщенным загрязнениями углем, проходит распределительную решетку и образует нижний слой в камере первого

яруса. Очистка воды в этом случае происходит за счет разности концентраций растворенных веществ в необработанной и очищенной воде. Избыток взвешенного слоя отработанного активированного угля попадает в выносной углеуплотнитель 9. Этот процесс усиливается эжектированием обработанной воды из углеуплотнителя через трубу 7, снабженную регулирующим вентилем 8, в переливную линию. Из углеуплотнителя отработанный активированный уголь направляется на регенерацию /4/.

Для доочистки больших объемов малоконцентрированных сточных вод применяют открытые фильтры с высотой угольной загрузки 1-2 м. Уголь укладывают на беспровальную решетку с колпачковым дренажным устройством или на слой гравия и мелкого щебня высотой 0,4-0,5 м, расположенный на обычной решетке с отверстиями 5-10 мм при шаге 10-20 мм. Для перегрузки фильтров используют гидротранспорт.

Сточные воды с ХПК более 150 мг/л очищаются в колонных адсорберах открытого или напорного типа диаметром не более 5 м, высотой не более 12 м. Для равномерного распределения сточной воды по сечению колонны используют различные устройства: трубчатую систему, лотки, конические вставки, щебеночный или гравийный слой высотой 0,5 м.

При доочистке сточных вод в адсорберах с неподвижным слоем загрузки скорость потока воды v принимается 4-10 м/ч, потери напора при этом составляют 40-60 % высоты загрузки. При доочистке сточных вод с концентрацией взвешенных веществ более 10 мг/л значительно возрастают потери напора и ухудшается качество доочистки. Для обеспечения глубокой доочистки при одновременном полном использовании адсорбционной емкости угля в адсорберах с неподвижной загрузкой, сточные воды пропускают последовательно через несколько групп параллельно работающих адсорберов. При полном использовании адсорбционной емкости угля в первых по ходу потока воды адсорберах их ставят на перегрузку и после заполнения чистым углем переключают в конец установки /2/.

Основным препятствием к широкому внедрению адсорберов с обновляющимся и кипящим слоем адсорбента является дефицит, а иногда и отсутствие дешевых монодисперсных сорбентов с высокой механической прочностью.

Подача неосветленной воды на угольные фильтры приводит к быстрой кольматации верхнего слоя загрузки, сокращению интервала защитного действия фильтра и необходимости частых промывок. Уголь при этом измельчается, истирается и выносится из фильтра при промывке или преждевременно засоряет дренажную систему при фильтровании /4/.

Очистка сточных вод от нефтепродуктов - одна из наиболее действенных мер защиты морей и внутренних водоемов от загрязнений. Хотя со временем эти вещества и подвергаются физическому и биологическому разрушению, тем не менее самые стойкие из них более токсичны в растворенном виде. Углеводороды нефти, в отличие от многих других веществ, способны проникать в жировую ткань водных организмов и накапливаться в ней без контакта с нефтеокисляющими бактериями, а затем попадать в продукты питания человека. Сорбция на активных углях - один из самых эффективных способов выделения из воды растворенных углеводородов нефти и защиты от них водоемов.

Первые сорбционные установки по очистке сточных вод нефтеперерабатывающих заводов от нефтепродуктов были построены в 1971-1972 гг. в Японии и США (16 тыс. м 3 /сут), а затем в Финляндии для очистки балластных вод.

Действующие установки позволяют снижать для концентрированных стоков С 0 от 250-450 до 37 мг/дм 3 (по ХПК); более разбавленные стоки очищаются на угле до С 0 = 7-13 мг/дм 3 и содержания нефтепродуктов до 0,3 мг/дм 3 . Как показывает опыт работы станции в г. Порвоо (Финляндия), лучшие результаты достигаются при обработке содержащих нефть стоков по схеме: накопитель - нефтеловушка - скорый фильтр - адсорбер.

Более глубокая очистка достигается увеличением времени контакта угля и воды до 30-50 мин. В Финляндии строительство станции производительностью 65000 м 3 /сут (максимальная производительность 8800 м 3 /сут) обходится в 2 млн. долл., эксплуатационные затраты - 0,09 долл/м 3 , а себестоимость очистки - 0,20 долл/м 3 , т.е. в 1,5 раза ниже, чем при комбинации химической и биологической очисток.

В Японии эксплуатационные расходы на очистку воды от нефти составляют 0,026-0,013 долл/м 3 при производительности 3,8-38 тыс. м 3 /сут.

Опыт показывает, что подача на уголь воды с высоким содержанием нефтепродуктов нецелесообразна, хотя, например, на нефтепромыслах оно достигает 450 мг/дм 3 . Целесообразно отделять от воды плавающие и эмульгированные нефтепродукты с тем, чтобы на сорбент подавалась вода, содержащая в основном растворенные нефтепродукты. Предварительно воду очищают в нефтеловушках и на фильтрах с пенополиуретановой загрузкой. Фильтры с загрузкой (Н р = 2 м) из дробленного пенополиуретана (d экв = 5-10 мм) позволяют непрерывно очищать воду до концентрации нефтепродуктов и взвешенных веществ 10-15 мг/дм 3 при нагрузке 25-35 м 3 /(м 2 ·ч) и потерях напора до 5-7 ПА (0,5-0,7 мм вод. ст). В этих высокопроизводительных аппаратах сорбент регенерируют простым механическим отжатием.

Плавающие и эмульгированные нефтепродукты могут быть удалены при коалесценции на загрузках из песка, антрацита, полипропилена и других. В качестве эталона сравнения эффективности задержания нефти на загрузке предложен «параметр смачиваемости». Он определяется как отношение времени защитного действия стандартного фильтра по гексану (8-167 мин) ко времени защитного действия этого фильтра по воде (7,5-32 мин).

Сорбционная емкость ГАУ по нефтепродуктам достаточно велика. При сорбции из промысловых сточных вод на углях АР-3, АГН, АГ-5, АГ-3, КАД и ОУ она достигает: 7,7; 7,5; 6,6; 8,0 и 14,2 мг/г, пичем некоторое количество (12,5 %) эфирорастворимых примесей сорбируется на АУ значительно хуже остальных загрязнений. При очистке стоков нефтебаз уголь ОУ-А также оказался эффективнее; его сорбционная емкость достигала 62,5 мг/дм 3 при С р =0,05 мг/г, а угля КАД-молотый - 160 мг/дм 3 . Интересно, что по финским данным в случае термической регенерации ГАУ оптимальное количество сорбата в нем ~ 200 мг/г

Сорбционную очистку высококонцентрированных стоков (С 0 > 5-10 г/дм 3 (по ХПК)) используют довольно редко. Очистка надиловой воды (С 0 > 15-20 г/дм 3 (по ХПК)) характеризуется нелинейными изотермами сорбции, т.е. можно говорить о достижении максимально возможной емкости сорбентов. Более того, при очистке сточных вод от высокомолекулярных соединений при С 0 = 20-70 г/дм 3 (по ХПК) увеличение дозы АУ не всегда приводит к повышению эффекта очистки воды сверх 50 %, хотя разбавление этих растворов в 10 раз увеличивают глубину извлечения этих же примесей до 82 %. Лишь некоторые ПАВ и полупродукты их синтеза из высококонцентрированных растворов, содержащие ароматические кольца, сорбируются на АУ в больших количествах. Так, керосин и бензол сорбируются на угле КАД-иодный в количестве 0,7-1,4 г/г при равновесных его концентрациях 2,1-15,1 г/дм 3 .

Сорбцию на АУ можно использовать в качестве предварительной обработки высококонцентрированных сточных вод перед дальнейшей их БХО и реже перед ФХО. В этом случае из сточных вод хотят выделить биологически неокисляемые или токсичные органические примеси. Сорбционная предочистка сточных вод на АА (после коагуляции) позволяет снизить С 0 этого стока от 7-10

до 2-6 г/дм 3 (по ХПК) за счет выделения ароматических хлор- и азотсодержащих углеводородов. Для очистки столь концентрированных стоков необходимо большое количество сорбента. В предочистке стоков производства изопрена доза АУ составляет 90 г/дм 3 (в сточных водах содержится 1 % несорбируемых примесей и 25 % хорошо сорбируемых). Но сорбционная обработка позволяет в дальнейшем повысить эффект БХО от 50-60 до 90 % и избавиться от дополнительного 5-15-суточного пребывания воды в аэрируемых прудах.

Поверхностно-активные вещества (ПАВ) и красители - типичные загрязнители сточных вод. Активные триазолоновые красители полностью сорбируются из воды на угле КАД-молотый, его максимальная статическая емкость достигает 24,5-54 мг/г. Сорбция из смеси красителей различного типа значительно хуже. Сложность очистки сточных вод текстильных предприятий обусловлена наличием в них разнотипных красителей, присадок и закрепителей с различными сорбционными характеристиками. При Д у = 0,5 - 5 г/дм 3 ряд красителей в статических условиях сорбируются на 40-50 %, в то время как прямые и сернистые - лишь на 10-20 %. Однако иные методы обесцвечивания этих стоков еще менее эффективны. Оптические отбеливатели сорбируются на АУ на 50-60 %.

Сорбционная емкость АУ по СПАВ сравнительно невелика, особенно в той области низких концентраций (менее 0,5 ммоль/дм 3), которая характерна для сточных вод. Тем не менее применение АУ целесообразно: другие методы не обеспечивают такого полного извлечения СПАВ из водных растворов. Емкость углей АГ-3, АГ-5 и БАУ по неионогенным ПАВ и угля КАД-иодный по анионным ПАВ достигает 1,5-20 мг/г, хотя часть объема пор остается недоступной для больших молекул СПАВ и их ассоциатов. В динамических условиях длина зоны массопередачи сорбции ионогенных ПАВ (ОП-7) невелика, поэтому ГАУ в адсорберах сорбционная емкость исчерпывается на 80-90 % до

проскока. ПАВ извлекают сорбцией и из пены флотационной очистки. Практически во всех случаях можно добиться снижения концентрации ПАВ до уровней ПДК.

Применяемые при обогащении полезных ископаемых катионные диэмульгаторы ПАВ также сорбируются ГАУ. Исследования ВНИИ ВОДГЕО показали, что деэмульгатор АНП сорбируется из сточных вод, содержащих другие органические и неорганические вещества, лигниновым АУ до С к = 0,06 мг/дм 3 , но при увеличении Д у до 6-18 г/дм 3 .

При общей очистке стоков с переменным составом неэффективно использовать специфические сорбенты, обладающие селективными свойствами. Так, если очистку общих стоков химического предприятия ведут на сугубо микропористом ГАУ, обладающем хорошей емкостью по ароматическим соединениям, то в первый период работы на АУ извлекается 70-80 % органических веществ, а при изменении состава сточных вод - лишь 20-40 % загрязнений.

С повышением эффекта очистки воды, особенно достижением низких ХПК очищенной воды, возрастает не столько расход сорбента, сколько размеры адсорберов.

В очистке бытовых сточных вод на АУ, возможно, нет столь обширной статистики, как в промышленности, но близость состава стоков городов и населенных пунктов позволяет непосредственно сравнивать полученные аналогичные результаты. С начала 70-х гг. в США строятся и работа.т экспериментальные станции по ФХО бытовых стоков; к 1975 г. Их было более 20. Везде проектированию и строительству крупных станций предшествуют натурные эксперименты.

В среднем, площадь станции ФХО бытовых стоков равна 0,05 м 2 на 1 м 3 /сут производительности, а станции БХО - 0,15 м 2 . Хотя для городских сточных вод себестоимость ФХО выше себестоимости БХО, качество получаемой воды удовлетворяет самым жестким нормам для семи длительно работающих установок: эффект удаления органических веществ 91-98 %.

Общее осложнение в работе всех адсорберов для очистки бытовых стоков - образование сероводорода. Бороться с этим явлением можно эффективно с помощью частых промывок угля и преаэрации воды.

Опытно-промышленные и пилотные установки по очистке бытовых вод на АУ с 1970-1972 гг. работали в различных штатах США. В Кливленде на установке по классической схеме: коагуляция - отстаивание - фильтрование - сорбция в течение нескольких месяцев была получена очищенная вода с БПК 5 < 9 мг/дм 3 и ХПК < 15 мг/дм 3 .

Ряд установок работали по схеме «Прогресс-3-М», особенность которой заключалась в предварительной коагуляции воды гидроокисью кальция (0,6 - 0,8 г/дм 3) при рН 11,8-12,0.

В нашей стране также разрабатываются и строятся станции ФХО бытовых стоков. В них предусмотрены не только классическая схема: коагуляция (сульфатом аммония) - флокуляция (полиэтиленимином) - отстаивание (1 ч) - фильтрование (8 - 9 м/ч) - сорбция, но и 10-минутное предсорбционное

аэрирование и постхлорирование.

Сорбционная очистка бытовых и промышленных сточных вод на ПАУ по технологии существенно отличается от сорбции на ГАУ. Обычно для получения идентичных эффектов очистки воды дозы ПАУ больше доз ГАУ. Кроме того, на ПАУ не всегда удается получить глубоко очищенную (более 95 %) воду. Сама схема обработки воды на ПАУ несколько иная, так как требования к грубодисперсным примесям в воде при работе ПАУ менее жесткие /1/.

4 Расчет адсорбционной установки

4.1 Методика расчета

Ориентировочный расчет адсорбционной установки ведется в следующей последовательности:

  1. Определяют общую площадь F общ, м 2 , параллельно работающих адсорберов по формуле (1):

где: Q - расход сточных вод, м 3 /ч.

  1. Число параллельно работающих адсорберов определяют по формуле (2):

где: F адс - площадь поперечного сечения одного адсорбера, м 2 .

  1. Общая высота угольной загрузки Н общ, м, последовательно работающих адсорберов:

где: Н m - длина зоны массопередачи, заключенной между слоями с С 0 и С пр,

С 0 - концентрация загрязнений в воде, контактирующей с

отработавшим активным углем, мг/л;

С пр - максимально допустимая концентрация загрязнений в очищенной

воде, мг/л;

Величину Н m определяют экспериментально на модели адсорбера диаметром не менее 30 мм, высотой 6-12 м при v = 4-10 м/ч или принимают Н не более 12 м при v = 10 м/ч и при доочистке воды от С 0 = 250 мг/л до С пр = 30 мг/л, считая по ХПК. В тех же условиях при v = 4 м/ч ориентировочно можно принять Н = 5 м.

  1. Резервную высоту угольной загрузки Н р, обеспечивающую требуемое качество доочистки в период выгрузки отработавшего угля и включения в работу чистого сорбента, принимают не менее 20 % Н m или определяют по формуле (4):

где: u - скорость перемещения фронта проскока (воды с концентрацией

С пр), м/ч;

t - продолжительность периода перегрузки адсорберов, ч.

  1. Величину u определяют экспериментально по результатам динамических опытов или ориентировочно по формуле (5):

где: ξ - порозность угольной загрузки, равная примерно 0,5;

а 0 - величина адсорбции, мг/л, равновесная С 0 ;

Величина а 0 принимается по экспериментальным данным. При отсутствии таких данных ориентировочно принимают u = 2-6 см/ч.

  1. Определяют число последовательно работающих адсорберов (обычно принимается не более 3):

где: Н адс - высота угольной загрузки в одном адсорбере, м.

  1. Вычисляют продолжительность фильтроцикла одного адсорбера Т ф, ч, после окончания начального периода работы установки (1-3 сут) по формуле (7):

Для уменьшения общего количества сорбента, загружаемого в установку, и для наиболее полного использования адсорбционной емкости угля применяют адсорберы с противоточным движением воды и угольной загрузки в плотном или псевдоожиженном виде.

4.2 Расчет адсорбционной установки

Исходные данные: расход сточных вод Q = 417 м 3 /ч, скорость потока v = 10,0 м/ч, D = 3,5.

  1. Определим общую площадь F общ, м 2 , параллельно работающих адсорберов по формуле (1):
  1. Число параллельно работающих адсорберов определяем по формуле (2):
  1. Общую высоту угольной загрузки Н общ, м, последовательно работающих адсорберов определяем по формуле (3):

Величину Н m принимаем равной 12 м.

  1. Резервную высоту угольной загрузки Н р определяем по формуле (4):

Величину u принимаем равной 6 см/ч, t = 4 ч.

  1. Определяем число последовательно работающих адсорберов по формуле (6):
  1. Вычисляем продолжительность фильтроцикла одного адсорбера Т ф, ч, по формуле (7):

Заключение

Среди физико-химических методов очистки сточных вод от нефтепродуктов лучший эффект дает сорбция на углях.

Сорбция представляет собой один из наиболее эффективных методов глубокой очистки от растворенных органических веществ сточных вод предприятий целлюлозно-бумажной, химической, нефтехимической, текстильной и других отраслей промышленности.

Сорбционная очистка может применяться самостоятельно и совместно с биологической очисткой как метод предварительной и глубокой очистки.

Таким образом, сорбционные методы относятся к наиболее эффективным для глубокой очистки сточных вод от растворенных органических веществ.

Преимуществами сорбционных методов являются:

Возможность адсорбции веществ из многокомпонентных смесей;

Высокая эффективность при малых концентрациях загрязнений сточных вод;

Эффективны для извлечения из сточных вод ценных растворенных веществ с их последующей утилизацией и использование очищенных сточных вод в системе оборотного водоснабжения промышленных предприятий.

Применение технологических сточных вод в системе оборотного водоснабжения решает не только задачу экономии свежей воды, но и радикального оздоровления водоемов.

Недостатком сорбционной очистки сточной воды является:

Относительно высокая стоимость;

Малый срок службы;

Затраты на обслуживание.

Сорбенты способны извлекать из воды многие органические вещества, в том числе и биологически жесткие, не удаляемые из нее другими методами. При использовании высокоактивных сорбентов воду можно очистить от загрязнений до практически нулевых остаточных концентраций. Сорбцию применяют и при небольших концентрациях загрязнений, когда другие методы очистки оказываются неэффективными и требуется глубокая степень очистки. В тех случаях, когда концентрация сорбируемых веществ в исходных сточных водах велика, обычно выгоднее использовать другие методы очистки.

В качестве сорбентов применяют различные пористые материалы: золу, коксовую мелочь, торф, силикагели, алюмогели, активные глины и др. Эффективными сорбентами являются активированные угли различных марок. В зависимости от области применения метода сорбционной очистки, места расположения адсорберов в общем комплексе очистных сооружений, состава сточных вод, вида и крупности сорбента и др. назначают ту или иную схему сорбционной очистки и тип адсорбера. Наиболее простым является насыпной фильтр, представляющий собой колонну с неподвижным слоем сорбента, через который фильтруется сточная вода. Наиболее рациональное направление фильтрования жидкости - снизу вверх, так как в этом случае происходит равномерное заполнение всего сечения колонны и относительно легко вытесняются пузырьки воздуха или газов, попадающих в слой сорбента вместе со сточной водой.

Сорбционные фильтры — достаточно востребованные изделия для удаления разнообразных механических и хлорорганических примесей путём поглощения загрязнителя внутренней поверхностью зерна загрузки.

О выборе и установке сорбционных фильтров пойдет речь в этой статье.

Что такое адсорбция

Термином «адсорбция» именуется процесс поглощения загрязнения жидкости поверхностным слоем твёрдого тела. Он основан на диффузии молекул загрязняющих веществ через специальную жидкостную плёнку, которая окружает частицы адсорбента, к поверхности последнего, которая происходит при перемешивании очищаемой жидкости.

Затем диффузия продолжается со скоростью, определяемой строением применяемого адсорбента и величинами молекул собираемых веществ.

Данный процесс наиболее эффективен в тех случаях, когда жидкость имеет низкую концентрацию загрязняющих веществ (на стадии глубокой очистки). В таких случаях эффективность процесса позволяет получить на выходе практически нулевую концентрацию загрязняющих веществ.

Эффективность и скорость адсорбции прямо зависит от:

  • структуры сорбента;
  • концентрации загрязняющих веществ и их химической природы;
  • активной реакции среды;
  • температуры.

На сегодняшний день лучшими сорбентами, предназначенными для очистки воды, считаются активированные угли разных марок. Эффективность последних определяется наличием микропор. Суммарный их объём является основной характеристикой и указывается для каждой марки.

При сорбционном процессе должно быть исключено попадание на уголь воды, в которой растворены коллоидные и взвешенные вещества, т.к. они экранируют поры активированного угля. Уголь, потерявший способность к сорбции, заменяют, либо регенерируют.

Добавление озона или хлора (окислителя) до того, как вода поступит на фильтр, увеличивает срок эксплуатации активированного угля до замены, улучшает качество воды на выходе и очищает её от имевшихся соединений азота.

Совместное выполнение озонирования и сорбции позволяет добиться синергетического эффекта, что почти в 3 раза повышает возможности активированного угля.

Если сорбция происходит после предварительно выполненного хлорирования, то из очищаемой жидкости удаляется аммонийный азот.

Если в качестве сорбентов применяются содержащие Mg и Са минералы природного происхождения, либо оксиды алюминия, из воды весьма эффективно удаляются соединения фосфора.

Назначение и область применения

Сорбционные фильтры различных марок используются для осуществления глубокой очистки воды в системах замкнутого водоснабжения, а также для очистки от органических загрязнителей (включая биологически жёсткие) сточных вод.

Очистка с использованием процесса сорбции считается одним из самых эффективных методов проведения тонкой очистки этих вод от загрязнений органического происхождения.

Наиболее эффективна технология при выполнении очистки стоков от красителей, гидрофобных и ароматических соединений группы алифатических, слабых электролитов и т.п.

Метод сорбции не используется для очистки стоков, загрязнённых исключительно веществами неорганического происхождения, либо органическими низкомолекулярными (альдегиды, спирты).

Технологии сорбционной очистки используются как самостоятельно, таки и в блоке с очисткой биологической на этапе глубокой предварительной доочистки.

Классификация установок сорбционной очистки

По типу процесса:

  • периодический;
  • непрерывный.

По гидродинамическому режиму:

  • установки вытеснения;
  • установки смешения;
  • установки промежуточного типа.

По состоянию слоёв сорбента:

  • движущийся;
  • неподвижный.

По направлению фильтрации:

  • противоточная;
  • прямоточная;
  • смешенного движения.

По контакту взаимодействующих фаз:

  • ступенчатый;
  • непрерывный.

По конструкции фильтра:

  • колонная;
  • емкостная.

Конструкция сорбционного фильтра

Сорбционный фильтр состоит из:

  • корпуса, представляющего собой баллон из стеклопластика необходимых размеров;
  • неподвижного слоя из активированного угля, имеющего гравийную подсыпку;
  • управляющего клапана разных типов (вариант – задвижки механической);
  • трубопровода, по которому подаётся сточная вода;
  • трубопровода, по которому отводится вода очищенная;
  • трубопровода, по которому подаётся вода взрыхляющая;
  • дренажно-распределительной системы.

Линейная скорость выполнения фильтрации зависит во многом от степени загрязнения воды, подаваемой на очистку. Её значение может составлять от 1 до 10 м3/час. Размеры зерна сорбента колеблются от 1 до 5 мм.

Наиболее оптимальным вариантом очистки считается фильтрация, в процессе проведения которой жидкость подаётся снизу вверх. При этом равномерно заполняется вся площадь сечения фильтра, а поступившие с водой пузырьки воздуха вытесняются достаточно легко.

Фильтры, имеющие неподвижный слой сорбентов, применяются для регенеративной очистки стоков с одновременным решением задач утилизации имеющихся в них ценных компонентов. Десорбция выполняется с использованием химических растворителей либо водяного пара.

Принцип работы

Рассмотрим принцип работы сорбционного фильтра на примере модели серии ФСБ, используемого в технологических схемах ливневой канализации. Непосредственно на его входе монтируется пескоулавливатель и нефтеулавливатель, что позволяет снизить показатели по указанным типам загрязнений до разрешённых концентраций.

Вода, пройдя описанный выше предфильтр, поступает по подводящей трубе в сорбционный блок. Отсюда, через распределительно-разгрузочную трубу, вода перемещается в нижнюю распределительную зону.

Здесь она равномерно распределяется по всей площади заложенного сорбента, марка и объёмы которого зависят от начальной и конечной концентрации загрязняющих веществ и требуемой производительности. П

осле этого вода восходящим потоком направляется в сборный круговой лоток, а оттуда отводится через патрубок.

Монтаж сорбционного фильтра

Процесс монтажа:

  • выкапывается котлован требуемых размеров;
  • дно просыпается песком, слой которого достигает толщины 300мм, затем тщательно трамбуется;
  • по этой подушке заливается железобетонная плита (300мм и более), геометрические размеры которой определяются величиной «диаметр корпуса фильтра + 1000мм»;
  • на плиту строго вертикально монтируется корпус сорбционного блока доочистки;
  • для устойчивости в корпус предварительно заливается вода примерно до уровня перфорированного днища;
  • чтобы избежать сдвига корпуса при обратной засыпке, его предварительно крепят анкерами;
  • слоями по 300мм котлован засыпается песком без камней, с тщательной трамбовкой каждого слоя. Подсыпка завершается после достижения уровня выходного и входного патрубков;
  • подключаются трубопроводы (переливной, отводящий, подводящий). Далее процесс засыпки продолжается до верха корпуса фильтра. Необходимо контролировать работу вибратором в местах подсоединения трубопроводов, упомянутых выше, чтобы не повредить их;
  • загрузка подаётся внутрь корпуса мешками. Причём следующий подаётся после равномерного распределения содержимого предыдущего по всей поверхности перфорированного днища;
  • до момента ввода в эксплуатацию уложенную загрузку требуется тщательно отмыть.

Корпус в обязательном порядке необходимо заполнить загрузкой и чистой водой.

Чтобы выбранный вами сорбционный фильтр удалял максимально возможное количество типов загрязняющих веществ, к угольному фильтру в обязательном порядке следует добавлять различные ионообменные вещества, перечень которых определяется с учётом приоритетных загрязнителей на вашем предприятии (участке).

Описание презентации Сорбционные методы очистки воды Физико-химические методы водоподготовки 1 по слайдам

Сорбционные методы очистки воды Физико-химические методы водоподготовки 1 Лекция

Роль адсорбционных методов очистки воды Физико-химические методы водоподготовки Очистка воды сводится, как правило, к переводу содержащихся в ней загрязняющих веществ в твердую (реже в газовую) фазу. Перевод в твердую фазу веществ, присутствующих в воде в ионной форме, достигается путем их перевода в малорастворимые соединения (химическое осаждение) или путем соосаждения (коагуляции). Однако, если в воде присутствуют растворенные вещества в молекулярной форме (особенно, если они являются неполярными или слабополярными), для их удаления требуется использовать иные методы, среди которых наиболее перспективным оказывается адсорбция. Адсорбция – поглощение молекул растворенного в воде вещества твердым нерастворимым телом – адсорбентом. Поглощение происходит за счет физической сорбции или хемосорбции на развитой поверхности адсорбента. Физическая сорбция основана на силах межмолекулярного взаимодействия. Хемосорбция основана на поглощении с образованием химических соединений на поверхности твердого тела с участием химических реакций. Адсорбенты – твердые нерастворимые тела, обладающие развитой поверхностью (до 1000 м 2 /г) за счет высокой пористости.

Структура активированных углей Физико-химические методы водоподготовки Наиболее распространенные адсорбенты – активные (активированные) угли разных марок. Активные угли представляют собой пористые углеродные тела, зерненые или порошкообразные, имеющие большую площадь поверхности. Неоднородная масса, состоящая из кристаллитов графита и аморфного углерода, определяет своеобразную пористую структуру активных углей, а также их адсорбционные и физико-механические свойства. Пористая структура активных углей характеризуется наличием развитой системы пор, которые классифицируются по размерам следующим образом: Микропоры – наиболее мелкая разновидность пор, соизмеримая с размерами адсорбируемых молекул. Удельная поверхность микропор достигает 800– 1000 м 2 /г. Мезопоры – поры, для которых характерно послойное заполнение поверхности адсорбируемыми молекулами, завершающееся их наполнением по механизму капиллярной конденсации. Удельная поверхность мезопор достигает 100– 200 м 2 /г. Макропоры – самая крупная разновидность пор, удельная поверхность которых обычно не превышает 0, 2– 0, 5 м 2 /г. Макропоры в процессе сорбции не заполняются, но выполняют роль транспортных каналов для доставки вещества к поверхности адсорбирующих его пор. В соответствии с нормами Международного союза чистой и прикладной химии ИЮПАК, поры с диаметром меньше 0, 4 нм называются субмикропорами, поры с диаметром от 0, 4 до 2, 0 нм – микропоры, поры с диаметром от 1 до 50 нм – мезопоры и более 50 нм – макропоры. — микропоры – с размером до 20 A, — мезопоры – с размером 20– 500 A, — макропоры – с размером более 500 A.

Роль адсорбционных методов очистки воды Физико-химические методы водоподготовки. Адсорбционные свойства активных углей оцениваются количеством модельного вещества, сорбированного единицей массы угля при определенных условиях, а также временем защитного действия единицы объема угля до полного его насыщения. В основном адсорбционные свойства углей определяются микропорами, составляющими до 90% всей поверхности активного угля. На ней и протекают процессы адсорбции, в основе которых лежит взаимодействие энергетически ненасыщенных атомов углерода с молекулами адсорбируемых веществ. Мезо- и макропоры выполняют в основном транспортную роль. Большой объем крупных пор приводит к уменьшению плотности адсорбента и его емкости. Лучше сорбируются вещества в молекулярной форме, хуже – в ионной. Способность органических веществ к сорбции возрастает в ряду: гликоли < спирты < кетоны < сложные эфиры < альдегиды < недиссоциированные кислоты < ароматические соединения. Способность к сорбции возрастает с ростом молекулярной массы и температуры.

Механизмы адсорбции на углях Физико-химические методы водоподготовки. Для адсорбции в микропорах (удельный объем 0, 2 -0, 6 см 3 /г и 800 -1000 м 2 /г), соизмеримых по размерам с адсорбируемыми молекулами, характерен главным образом механизм объемного заполнения. Аналогично происходит адсорбция также в супермикропорах (удельный объем 0, 15 -0, 2 см 3 /г) — промежуточные области между микропорами и мезопорами. В этой области свойства микропор постепенно вырождаются, свойства мезопор проявляются. Механизм адсорбции в мезопорах заключается в последовательном образовании адсорбционных слоев (полимолекулярная адсорбция), которое завершается заполнением пор по механизму капиллярной конденсации. У обычных активных углей удельный объем мезопор составляет 0, 02 -0, 10 см 3 /г, удельная поверхность 20 -70 м 2 /г; однако у некоторых активных углей (например, осветляющих) эти показатели могут достигать соответственно 0, 7 см 3 /г и 200 -450 м 2 /г. Макропоры (удельный объем и поверхность соответственно 0, 2 -0, 8 см 3 /г и 0, 5 -2, 0 м 2 /г) служат транспортными каналами, подводящими молекулы поглощаемых веществ к адсорбционному пространству гранул активированного угля. Микро- и мезопоры составляют наибольшую часть поверхности активированных углей, соответственно, именно они вносят наибольший вклад в их адсорбционные свойства.

Механизмы адсорбции на углях Физико-химические методы водоподготовки. Микропоры особенно хорошо подходят для адсорбции молекул небольшого размера, а мезопоры — для адсорбции более крупных органических молекул. Определяющее влияние на структуру пор активированных углей оказывают исходное сырье, из которого их получают. Активные угли на основе скорлупы кокоса характеризуются большей долей микропор, а активированные угли на основе каменного угля — большей долей мезопор. Большая доля макропор характерна для активированных углей на основе древесины. В активном угле как правило существуют все разновидности пор, и дифференциальная кривая распределения их объема по размерам имеет 2 -3 максимума. В зависимости от степени развития супермикропор различают активные угли с узким распределением (эти поры практически отсутствуют) и широким (существенно развиты).

Механизмы адсорбции на углях Физико-химические методы водоподготовки. В порах активного угля существует межмолекулярное притяжение, которое приводит к возникновению адсорбционных сил (Ван-дер-Вальсовые силы), которые по своей природе сродни силе гравитации с той лишь разницей, что действуют они на молекулярном, а не на астрономическом уровне. Эти силы вызывают реакцию, подобную реакции осаждения, при которой адсорбируемые вещества могут быть удалены из водных или газовых потоков. Молекулы удаляемых загрязнителей удерживаются на поверхности активированного угля межмолекулярными силами Ван-дер-Ваальса. Таким образом, активированные угли удаляют загрязнители из очищаемых веществ (в отличие, например, от обесцвечивания, когда молекулы цветных примесей не удаляются, а химически превращаются в бесцветные молекулы). Химические реакции также могут возникать между адсорбируемыми веществами и поверхностью активированного угля. Эти процессы называются химической адсорбцией или хемосорбцией, однако в основном процесс физической адсорбции происходит при взаимодействии активированного угля и адсорбируемого вещества. Хемосорбция широко применяется в промышленности для очистки газов, дегазации, разделения металлов, а также в научных исследованиях. Физическая адсорбция обратима, то есть адсорбируемые вещества могут быть отделены от поверхности и возвращены в их первоначальное состояние при определенных условиях. При хемосорбции, адсорбируемое вещество связано с поверхностью посредством химических связей, изменяя его химические свойства. Хемосорбция не обратима. Некоторые вещества слабо адсорбируются на поверхности обычных активированных углей. К числу таких веществ относятся аммиак, диоксид серы, пары ртути, сероводород, формальдегид, хлор и цианистый водород. Для эффективного удаления таких веществ используются активные угли, импрегнированные специальными химическими реагентами. Импрегнированные активированные угли используются в специализированных областях применения воздухо- и водоочистки, в респираторах, для военных целей, в атомной промышленности и др.

Основные варианты использования сорбционных методов очистки воды Физико-химические методы водоподготовки. Адсорбционные методы могут быть реализованы двумя основными способами: 1) Фильтрация через слой гранулированного активированного угля, 2) Дозирование в обрабатываемую воду порошкообразного активированного угля (углевание воды), 3) Фильтрация через волокнистый материал, содержащий активированный уголь. По форме и размеру частиц активные угли могут быть порошкообразными, зернеными (дроблеными и гранулированными), а также волокнистыми. Порошкообразные имеют размер частиц менее 0, 1 мм, зерненые – от 0, 5 до 5 мм, волокнистые – диаметр менее 0, 1 мм, а длину несколько сантиметров. Порошкообразные активные угли используют для очистки воды однократно на водопроводных станциях, вводя их во время или после коагуляции. Гранулированные угли применяются для очистки воды фильтрацией в аппаратах со сплошным слоем сорбента (механические фильтры). В зависимости от типа угли могут регенерироваться острым паром или реагентами. Однако из-за сложности организации такого процесса, больших потерь угля и невозможности полной его регенерации (только на 40– 70%) обычно уголь при очистке воды используют однократно. Волокнистые активные угли имеют наибольшую эффективную площадь поверхности и могут при-меняться в фильтрах воды специальной конструкции. Они нашли применение в бытовых фильтрах. Для оценки качества зерненых активных углей, используемых в качестве загрузки в различные типы адсорберов, важное значение имеют физико-механические характеристики, такие как: фракционный состав (зернение), насыпная плотность, механическая прочность.

Основные характеристики активированных углей Физико-химические методы водоподготовки. Гранулометрический размер (гранулометрия) — размер основной части гранул активного угля. Единица измерения: миллиметры (мм), mesh USS (американская) и mesh BSS (английская). Насыпная плотность — масса материала, заполняющего единицу объема под действием собственного веса. Единица измерения — грамм на сантиметр кубический (г/см 3). Площадь поверхности — площадь поверхности твердого тела отнесенная к его массе. Единица измерения — квадратный метр к грамму угля (м 2 /г). Твердость (или прочность) — все производители и потребители активированного угля пользуются значительно различающимися методиками определения прочности. Большинство методик основаны на следующем принципе: проба активированного угля подвергается воздействию механической нагрузки, а мерой прочности служит количество образующихся при разрушении угля мелкой фракции или измельчение среднего размера. За меру прочности принимают количество не разрушенного угля в процентах (%). Влажность — количество влаги, содержащееся в активном угле. Единица измерения – проценты (%).

Основные характеристики активированных углей Физико-химические методы водоподготовки р. Н водной вытяжки — значение р. Н водного раствора после кипячения в нем навески активного угля. Защитное действие — измерение времени адсорбции углем определенного газа до начала пропускания минимальных концентраций газа слоем активированного угля. Данный тест применяют для углей используемых для очистки воздуха. Чаще всего активный уголь тестируется по бензолу или четыреххлористому углероду (он же тетрахлорметан CCl 4). СТС адсорбция (адсорбция по четыреххлористому углероду) — через объем активированного угля пропускают четыреххлористый углерод, насыщение происходит до постоянной массы, далее получают количество адсорбированного пара, отнесенное к навеске угля в процентах (%). Йодный индекс (адсорбция йода, йодное число) — количество йода в миллиграммах, которое может адсорбировать 1 грамм активированного угля, в порошкообразной форме из разбавленного водного раствора. Единица измерения – мг/г. Адсорбция по метиленовому голубому — количество миллиграммов метиленового голубого, поглощаемое одним граммом активированного угля из водного раствора. Единица измерения – мг/г. Обесцвечивание мелассы (мелассовое число или индекс, показатель по мелассе) — количество активированного угля в миллиграммах необходимое для 50 %-го осветления стандартного раствора мелассы.

Производство активированных углей Физико-химические методы водоподготовки Для производства активированного угля используют печи различного типа и конструкции. Наибольшее распространение получили: многополочные, шахтные, горизонтальные и вертикальные роторные печи, а также реакторы с кипящем слоем. Основные свойства активных углей и прежде всего пористая структура определяются видом исходного углеродсодержащего сырья и способом его переработки. Сначала углеродсодержащее сырье измельчают до размера частиц 3 -5 см, затем подвергают карбонизации (пиролизу) — обжигу при высокой температуре в инертной атмосфере без доступа воздуха для удаления летучих веществ. На стадии карбонизации формируется каркас будущего активного угля — первичная пористость и прочность. Однако, полученный карбонизированный уголь (карбонизат) обладает плохими адсорбционными свойствами, поскольку размеры его пор невелики и внутренняя площадь поверхности очень мала. Поэтому карбонизат подвергают активации для получения специфической структуры пор и улучшения адсорбционных свойств. Сущность процесса активации состоит во вскрытии пор, находящихся в углеродном материале в закрытом состоянии. Основной принцип активирования состоит в том, что углеродсодержащий материал подвергается селективной термической обработке в соответствующих условиях, в результате которой образуются многочисленные поры, щели и трещины и увеличивается площадь поверхности пор на единицу массы. В технике используются химические и парогазовые способы активирования. Различают два вида активирования: химическое активирование и активирование газами.

Химическое активирование Физико-химические методы водоподготовки При химическом активировании используют главным образом некарбонизованные исходные материалы, к которым относятся торф и древесные опилки. Можно также использовать шламовые отходы осветляющих процессов. Превращение такого сырья в активный уголь происходит под действием дегидротирующих агентов при высоких температурах. В этом случае кислород и водород избирательно и полностью удаляются из углеродсодержащего материала, при этом происходит одновременно карбонизация и активация (обычно при температурах ниже 650°С). Карбонизованные материалы отличаются пониженным содержанием кислорода и водорода, поэтому они активируются неорганическими агентами не так легко, как некарбонизованные. В качестве активирующих агентов в технике в основном используются фосфорная кислота, хлорид цинка и сульфид калия. Активирование фосфорной кислотой может осуществляться по следующей схеме: тонкоизмельченное сырье смешивается с раствором фосфорной кислоты, смесь осуша-ется и нагревается во вращающейся печи до 400 -600°С. Известны процессы, которые проводятся при более высокой температуре (до 1100°С). Для получения широкопористых углей, используемых преимущественно для осветления, требуется значительно большее количество фосфорной кислоты, чем в производстве углей для очистки газа и водопод-готовки.

Химическое активирование Физико-химические методы водоподготовки При активировании хлоридом цинка 0, 4– 5 частей в виде концентрированного раствора смешивают с 1 частью сырья, смесь нагревают до 600– 700°С. Преимуществами данного способа активирования несомненно является сравнительно короткое время активирования исходных материалов, большой выход углеродного остатка, хорошие адсорбционные свойства активного угля. Обычно при химическом активировании получают мягкие и порошкообразные продукты. Смешивание углеродсодержащего сырья с углеродсодержащим связующим (например, древесных опилок с сульфонатом лигния) и активирующим агентом и последующее формование позволяют получить прочный активный уголь. Химическое активирование углей во вращающейся печи в течение 3 часов с применением в качестве активирующих добавок фосфорной кислоты и хлорида цинка позволяет получить формованные продукты, не уступающие по прочности углям, активированным водяным паром.

Активирование водяным паром и газами Физико-химические методы водоподготовки При обработке углеродсодержащих веществ окисляющими газами в соответствующих условия часть углерода выгорает и удаляется с летучими компонентами и внутренняя поверхность увеличивается. В качестве окисляющих агентов используются преимущественно водяной пар, диоксид углерода и кислород или воздух. При использовании кислорода следует соблюдать осторожность, поскольку он реагирует с углеродом в 100 раз быстрее диоксида углерода. При взаимодействии углерода с водяным паром или диоксидом углерода одновременно протекают следующие реакции: Поскольку это эндотермические реакции, необходим подвод теплоты. При этом решающее значение имеет хороший теплообмен между реактивирующим газом и частицами угля. Это требование выполняется за счет постоянного движения частиц угля в процессе активирования во вращающихся печах или реакторах с кипящем слоем. При использовании водяного пара для обеспечения эффективной скорости реакции необходима температура около 800°С, а при использовании диоксида углерода — 900°С. Если теплота подводится в основном активирующим газом, его температура должна быть еще выше.

Активирующие печи Физико-химические методы водоподготовки Активирование углеродсодержащих материалов окисляющими газами производится с достаточной скоростью только при температурах 600 -1000°С. Как уже отмечалось, реакция твердого материала с активирующими газами, которые используются в производстве (обычно это водяной пар и диоксид углерода), является эндотермической. Соответственно необходим постоянный подвод тепла. С другой стороны, последующее сгорание этих газов сопровождается выделением энергии. Таким образом, реакторы, используемые в технике для газового активирования, должны обладать следующими условиями: 1) нагревание реакционного материала до высокой температуры; 2) хороший контакт между углеродсодержащим веществом и активирующими газами; 3) подвод теплоты, необходимой для реакции; 4) возможно меньший расход тепловой энергии реакционного газа. Данным условиям соответствуют следующие виды печей, применяемых в производстве: вращающиеся, шахтные, многополочные, реакторы с кипящим и движущимся слоем.

Вращающиеся печи Физико-химические методы водоподготовки. Вращающиеся печи можно использовать для активирования тонкодисперсных и зерненых или формованных продуктов. Контакт между углеродсодержащим материалом и активирующими газами можно улучшить с помощью перемешивающих устройств. Время активирования зависит от угла наклона печи, а также от наличия внутренних перегородок и размера опорных колец. Активируемый материал и газ можно подавать в одном направлении или в противотоке. Кроме этого, различают две конструкции: печи с внутренним и внешним обогревом. Вращающиеся печи с внутренним обогревом снабжены в верхней части, где загружается углеродный материал, горелкой, питаемой жидким топливом или газом. Внутренняя поверхность печи выложена огнеупорным кирпичом. Вращающаяся печь: 1 – подъемные лопатки по длине печи; 2 – кладка печи; 3 – горелка.

Шахтные печи Физико-химические методы водоподготовки Шахтные печи состоят в основном из камер, расположенных вертикально одна над другой, стенки которых выложены кладкой из огнеупорного кирпича. Сверху загружается активируемый материал, снизу подается водяной пар. Использование насадок или направляющих устройств позволяет увеличить реакционную поверхность и улучшить перемешивание. Шахтная печь: 1 – канал для подвода реакционных газов; 2 – огневой канал. Шахтные печи используют для активирования кускового угля, который затем перерабатывается в зерненый или порошкообразный.

Реакторы кипящего слоя Физико-химические методы водоподготовки В реакторах кипящего слоя активируемые продукты и газы основательно перемешиваются. При этом значительно сокращается время активирования. Простая конструкция реактора с кипящим слоем представляет собой герметичную цилиндрическую или прямоугольную реакционную камеру, снабженную внизу перфорированной распределительной решеткой, через которую поступают реакционные газы. Процесс может быть непрерывным или периодическим. Известны многоступенчатые реакторы, состоящие из вертикально и горизонтально расположенных камер с переходами между ними, а также реакторы, состоящие из большого числа отделений, разделенных перегородками. Они предназначены для активирования мелкозерненого и в отдельных случаях формованного угля. Процесс можно усовершенствовать за счет обогрева внутреннего объема реактора теплотой, полученной при сгорании и образующихся в процессе активирования водяным паром. Другая возможность для дополнительного подвода теплоты и повышения производительности заключается во внешнем обогреве реактора. Реактор с псевдоожиженным слоем для газового активирования: 1 – «спокойный» объем; 2 – уровень псевдоожиженного слоя; 3 – внешний обогрев; 4 – теплообменник; 5 – распределительная решетка; 6 – реактор. На рисунке показана схема печи, в которую нагретые активирующие газы подаются со скоростью, обеспечивающей неподвижность нижнего слоя и псевдоожижение верхнего слоя шихты. Это создает возможность мягкого активирования различного сырья.

Адсорбционные методы дезодорации воды Физико-химические методы водоподготовки Неполярные адсорбенты широко используются в практике подготовки питьевых вод для извлечения из них органических веществ, обусловливающих привкусы и запахи. При адсорбции из растворов органических примесей предпочтение отдается активированным углям, поскольку вода (растворитель), характеризующаяся большим по- верхностным натяжением на границе раздела фаз с поверхностью зерен угля, ничтожно мало адсорбируется. Доза угля при статической адсорбции определяется по формуле: где С 0 и С ф — соответственно концентрации адсорбируемого вещества до и после адсорбции, Т — удельная адсорбция в мг/л в точке, соответствующей С ф. Скорость адсорбции органических веществ из воды зависит от структуры угля, удельной поверхности гранул (зерен), условий массообмена с обрабатываемой водой и р. Н воды. Если в растворе присутствуют одновременно несколько веществ, адсорбция протекает по закону вытеснения. По мере увеличения числа удаляемых из воды веществ, доля адсорбции каждого из них уменьшается. Степень адсорбируемости различных веществ из воды оценивается величиной уменьшения свободной энергии ΔF адс

Зависимость ΔF адс от классов органических веществ при адсорбции на угле КАД йод из водных растворов Физико-химические методы водоподготовки Наряду с углеванием (статические условия) дезодорацию воды на станциях различной производительности производят на стационарных адсорберах в динамических условиях — путем фильтрования исходной воды через слой гранулированного угля с диаметром зерен 1 -2 мм и толщиной до 2, 0 м. Различают динамическую емкость загрузки Е д (мг-экв/г) адсорбера (до начала проскока адсорбируемого вещества в фильтрат) и полную Е полн. (мг-экв/г) после прекращения извлечения адсорбируемого вещества из воды. №№ п/п Вещества ΔF адс 1 фенол 5, 07 2 бензолсульфонол 4, 83 3 хлоральгидрат 3, 26 4 муравьиная кислота 4, 21 5 щавелевая кислота 3, 22 6 нафталин 5, 85 7 хлороформ 4, 83 8 дихлорэтан 4,

Параметры процесса углевания воды Физико-химические методы водоподготовки При отсутствии пахнущих веществ биологического происхождения при адсорбции на углях различных марок (БАУ, КАД и др.), отличающихся величиной пор, интенсивность запаха воды существенно уменьшается с увеличением дозы активных углей от 2 до 20 —35 мг/л при р. Н = 4 -12 и температуре воды от +6 до +35°С. Основную роль в адсорбционной способности углей играют микропоры с радиусом (1, 1 -2, 5)· 10 -7 мм с удельной поверхностью до 1000 м 2 /ч. При углевании воды должны применяться легко смачивающиеся водой угли. Преимущество такого метода заключается в небольших требуемых капитальных затратах, а недостатки — в непроизводитель- ном расходе дорогостоящего адсорбента и в сложности эксплуатации. Нужно учитывать, что мелкий угольный порошок с воздухом образовывает взрывчатую смесь, а объем помещения для его хранения необходим в размерах 2 -4, 5 м 3 /т.

Параметры процесса углевания воды Физико-химические методы водоподготовки В зависимости от адсорбционной способности активных углей и интенсивности загрязнения воды веществами, придающими ей неприятные привкусы и запахи, расходы углей могут колебаться в весьма широких пределах — от десятой доли миллиграмма до 1000 мг/л. Наиболее используемые дозы угля при углевании природных вод находятся в пределах 3 -15 мг/л. Так, при дезодорации воды, загрязненной веществами, создающими привкусы и запахи биологического происхождения, их полное устранение с помощью угля марки ОУ-А щ достигалось при дозах 10 -12 мг/л. На практике процесс углевания включает в себя операции замачивание пылевидного угля, создание угольной суспензии с содержанием угля до 2, 5 -5% и ее дозирование в обрабатываемую воду. Активированный уголь вводят за 10 -15 минут до ввода других реагентов. Требуемое время контакта адсорбента с обрабатываемой водой — не менее 15 -20 минут. На начальной стадии обработки воды с первичным ее хлорированием порошкообразный сорбент вводят до или после ввода хлора в зависимости от взаимодействия хлора с веществами, создающими привкусы и запахи.

Сорбционные материалы и их свойства Физико-химические методы водоподготовки

Сорбционные материалы и их свойства Физико-химические методы водоподготовки. В технологии водоподготовки активированный уголь применяется в виде порошка при углевании воды, дробленных или недробленых гранул при фильтровании через угольные фильтры. Для очистки воды от загрязнений применяется сухое дозирование порошковых активированных углей, мокрое дозирование (в виде суспензии), фильтрование через взвешенный слой активированного угля, фильтрование в стационарных адсорберах с гранулированным активированным углем, фильтрование через комбинированные, песчано-угольные фильтры. Выбор марки адсорбционного материала заключается в подборе параметров его пористой структуры в зависимости от размеров молекул адсорбируемых веществ. Если в воде присутствует одно вещество с низкой молекулярной массой, например, фенол, азот аммонийный, азот нитритный, то данные вещества, имеющие относительно низкую молекулярную массу и размер молекул т = 0, 63 нм, лучше всего сорбируются в микропорах (т < 0, 63 -0, 7 нм) и супермикропорах (0, 6 -0, 7 < т < 1, 5 -1, 6 нм). Для этого случая пригодны активированные угли, имеющие требуемую структуру пор, типа АГ-3 и МАУ-100. Если в воде находятся нефтепродукты, СПАВ, гуминовые кислоты (по отдельности или смесь), то данные вещества, имеющие более крупные размеры молекул (т ~ 1, 8 нм), лучше всего сорбируются в мезопорах (1, 5 -1, 6 < т < 100 -200 нм). В этом случае пригодны активированные угли и сорбенты, имеющие требуемую структуру пор, например, мезопористый сорбент СГН-30. Если в воде присутствует смесь низко- и высокомолекулярных соединений (нефтепродукты, СПАВ, азот аммонийный, азот нитритный), то данные вещества, имеющие различные размеры молекул наиболее полно будут сорбироваться на адсорбентах, имеющих хорошо развитую структуру микропор и мезопор (таких как АГ-3, МАУ-100).

Конструкции адсорберов и основы их расчета Физико-химические методы водоподготовки Конструкция адсорбера со взвешенным слоем адсорбента 1 — противоток очищаемой воды и адсорбента (вода движется снизу вверх, а адсорбент сверху вниз); 2 — сбор очищенной воды; 3 — отвод очищенной воды: 4 — подача исходной воды; 5 — подача адсорбента; б — отвод угольной пульпы; 7 — система распределения очищаемой воды Конструкция стационарного адсорбера 1 — слой активированного угля; 2 — поддерживающий слой; 3 -трубопровод исходной воды 4 — трубопровод для отвода фильтрата; 5 — корпус фильтра; 6 — дренажная система; 7 — отражатель

Конструкции адсорберов и основы их расчета Физико-химические методы водоподготовки Высоту требуемого слоя угольной загрузки определяют по формуле: где Vр. ф. — расчетная скорость фильтрования, принимаемая равной 10 -15 м/ч; τ у — время прохождения воды через слой угля, принимаемое равным 10 -15 мин в зависимости от сорбционных свойств угля, концентрации и вида загрязнений воды и других факторов и уточняемое технологическими изысканиями. Длительность работы адсорбционного слоя фильтра до появления в профильтро-ванном потоке адсорбируемого вещества с концентрацией С пр, превышающей предельно допустимую, τ пр и длина слоя адсорбента L связаны в классическом уравнении динамики сорбции, предложенным для расчетов Шиловым Н. А. : где τ пр — время до «проскока» — время защитного действия слоя адсорбента, мин; L — высота слоя адсорбента, см; τ 0 , и k — константы: τ 0 =h/ν — характеризует простран-ство и время, необходимые для формирования и проведения массообменного процесса; k = A 0 /(C 0 *ν) — коэффициент защитного действия, мин/см; ν — скорость потока жид-кости, см/мин; A 0 — предельная динамическая емкость адсорбента при данной исход-ной концентрации С о; h — «мертвый» слой, математическая функция, характеризую щая неиспользованную длину слоя адсорбента, см.

Расчеты параметров адсорбции Физико-химические методы водоподготовки. Процесс адсорбции, проходящий в динамических условиях, состоит из периода формирования фронта адсорбции, характеризующегося переменной: скоростью его продвижения и периода его параллельного переноса при неизменной: скорости. Зависимость защитного действия слоя τ пр от его длины L графически описывается кривой ОАВ (рис.). Стадия, отвечающая формированию фронта адсорбции, отвечает кривой ОА. Начиная от значений, выраженных участком OL 0 , защитное действие слоя фильтра зависит от его длины (второй период динамического адсорбционного процесса). Величины k, τ 0 , и L 0 определяются графически: k = tg ﮮ BHL, L 0 = OL 0 , τ 0 = OD и h =ОН. Регенерацию сорбционной загрузки фильтра производят 5 %-ным раствором Na. OH или путем прокаливания угля при температуре 700 —750°С в отсутствие воздуха. Зависимость времени защитного действия от толщины слоя адсорбента Доза сорбента для каждого вещества определяется по формуле: где С i k — требуемая конечная концентрация вещества, мг/л; а — максимальное количество адсорбированного вещества, мг/мг, определяемое по изотермам адсорбции. На основании аналитических данных можно принять следующие значения величины а: для веществ, обуславливающих цветность воды — 0, 046 град/мг; для легкоокисляемой органики (перманганатной окисляемости) — 0, 0086 мг 0 2 /мг; для трудноокисляемой органики (ХПК) — 0, 02 мг 0 2 /мг; для азота аммонийного (NН 4) — 0, 00066 мг/мг; для фенолов — 0, 002 мг/мг; для пестицидов — 0, 04 мг/мг; для хлороформа — О, 16 мг/мг.

Расчеты параметров адсорбции Физико-химические методы водоподготовки. Суммарную дозу сорбента определяют по формуле: где k η — коэффициент, учитывающий степень использования равновесной статической адсорбционной емкости гранул сорбента, принимаемый равным 1, 2 -1, 3. Массу сорбента, вводимого в ОСФ, определяют по формуле: где Д Ʃ — суммарная доза сорбента, мг/л; Q в — расход воды; Т раб — продолжительность фильтроцикла, ч. Фильтрование осуществляется при восходящем потоке обрабатываемой воды. Фильтроцикл прекращается, когда начинается «проскок» в фильтрат контролируемого показателя качества воды. Средняя продолжительность фильтроцикла обычно составляет 12 -14 часов, после чего осуществляется промывка загрузки обратным током чистой воды в течение 3 -4 мин с интенсивностью 12 -15 л/ (с·м 2). Плавающая загрузка при промывке расширяется (до 40 -50%). Зерна адсорбционного материала под действием силы тяжести движутся вниз и через систему запорно-регулирующей арматуры отводятся из корпуса фильтра в специальную емкость.

Физико-химические методы водоподготовки Проблема возникновения запаха водопроводной воды и технология дозирования порошкообразных активированных углей на водопроводных станциях Санкт-Петербурга

Физико-химические методы водоподготовки Стандарты качества питьевой воды в Японии № Показатель Стандартное значение 1 Общее микробное число Не более 100 КОЕ в 1 мл 2 Общие колиформные бактерии Не должны обнаруживаться 3 Хлороформ Не более 0, 06 мг/л 4 Алюминий Не более 0, 2 мг/л 5 Железо Не более 0, 3 мг/л 6 Геосмин Не более 0, 00001 мг/л 7 2 -метилизоборнеол (MIB) Не более 0, 00001 мг/л 8 Общий органический углерод (TOC) Не более 5 мг/л 9 Значение p. H 5, 8 – 8, 6 10 Цветность Не более 5 градусов

Физико-химические методы водоподготовки Кинетика сорбции одорантов углями разных марок Y 1 — 2 -изопропил-3 -метоксипиразин, Y 2 — 2 -изобутил-3 -метоксипиразин, Y 3 -2 -метилизоборнеол, Y 4 -2, 4, 6 -трихлоранизол, Y 5 — геосмин Silcarbon TH 90 G ОУ-А Carbopal MB 4 Эбадайя LG 20 S Silcarbon TH 90 G

Кинетика сорбции одорантов углями разных марок Y 1 — 2 -изопропил-3 -метоксипиразин, Y 2 — 2 -изобутил-3 -метоксипиразин, Y 3 -2 -метилизоборнеол, Y 4 -2, 4, 6 -трихлоранизол, Y 5 — геосмин Физико-химические методы водоподготовки Hydraffin SC 14 FF УСВР

Результаты пилотных испытаний по изучению влияния активированного угля на параметры фильтрации в процессе контактной коагуляции 12 -13. 05 г. Физико-химические методы водоподготовки

Изменение мутности фильтратов и прирост потерь напора в течение фильтроциклов Физико-химические методы водоподготовки

Установка для приготовления и дозирования растворов из сухого материала KD 440 фирмы ALLDOS Физико-химические методы водоподготовки Характеристика ПАУ Hydraffin S

Результаты производственных испытаний и аналитических определений проб воды сырой и очищенной воды ВВС в период опытно-промышленной эксплуатации установки дозирования ПАУ 08. 2005 – 06. 09. 2005 г. Физико-химические методы водоподготовки. Продолжительность фильтроцикла (интервал между промывками) блока очистки во время проведения производственных испытаний в среднем составлял 12 часов, как и без использования ПАУ. При этом средний показатель мутности фильтрата имел значение 0, 26 мг/дм 3, цветности – 5, 2 град. , окисляемости — 2, 9 мг/дм 3, р. Н – 6, 5, а содержания остаточного алюминия в воде — 0, 09 мг/дм 3, что полностью соответствует требованиям Сан. Пи. Н 2. 1. 4. 10. По результатам аналитического сопровождения опытно-промышленной эксплуатации установки дозирования ПАУ, выполненным в НИЦЭБ РАН, следует, что содержание нефтепродуктов в очищенной воде в период дозирования ПАУ ОУ-А снижалось по сравнению с их содержанием в сырой воде в 2, 4 раза, в период дозирования ПАУ Hydraffin SC 14 FF – в 2, 1 раза. Перманганатная окисляемость очищенной воды при использовании ПАУ ОУ-А снижалась на 64, 4 % по сравнению с ее значением в сырой воде, при дозировании ПАУ Hydraffin SC 14 FF– на 64, 0 %, в то время как в период без дозирования ПАУ этот показатель составлял 56, 3 %. Бактериологические показатели фильтрата за весь цикл проведения испытаний не превысили существующих нормативов.

Результаты производственных испытаний и аналитических определений проб воды сырой и очищенной воды ВВС в период опытно-промышленной эксплуатации установки дозирования ПАУ 08. 2005 – 06. 09. 2005 г. Физико-химические методы водоподготовки. Дата доза ПАУ ОУ-А äî çà Hydraffin SC 14 FF мг/л 1 подъем 2 МО% удаления 1 подъем 2 МО 01. авг—8, 803, 8056, 820, 03 —-02. авг—7, 203, 2055, 560, 04 —-03. авг—8, 203, 2060, 980, 110, 01 —-04. авг—8, 503, 7056, 470, 01 —-05. авг—9, 104, 2053, 850, 01 —-08. авг—7, 203, 4052, 780, 04 —-09. авг 3, 00 -0, 220, 089, 403, 3064, 890, 03 ——10. авг 5, 00 -0, 340, 058, 803, 1064, 770, 02 ——11. авг 5, 00 -0, 540, 147, 502, 8062, 670, 02 ——12. авг 5, 00 -0, 180, 067, 002, 6062, 860, 04 —— 15. авг 7, 00*)-0, 070, 848, 302, 7067, 470, 05 —— 16. авг 7, 00*)-0, 070, 267, 202, 6063, 890, 04 ——17. авг 7, 00 -0, 380, 097, 502, 6065, 330, 05 —— 18. авг 7, 00*)-0, 097, 002, 4065, 710, 02 —— 19. авг 7, 00*)-0, 310, 268, 202, 8065, 850, 03 —— 22. авг 5, 00*)-0, 080, 138, 502, 8067, 060, 080, 01 —- 23. авг 5, 00*)-0, 340, 117, 402, 8062, 160, 120, 01 —- 24. авг 3, 00*)-0, 060, 018, 202, 8065, 850, 060, 01 —- 25. авг 3, 00*)—7, 502, 8062, 670, 01 ——26. авг—-8, 303, 5057, 830, 03 ——29. авг-3, 000, 150, 087, 702, 7064, 940, 150, 080, 377, 007, 804, 1030. авг-3, 000, 040, 067, 702, 8063, 640, 060, 223, 507, 803, 7031. авг-5, 000, 090, 028, 502, 9065, 880, 090, 020, 596, 008, 003, 8001. сен-5, 000, 050, 017, 403, 0059, 460, 050, 010, 237, 407, 903, 7002. сен-7, 000, 040, 018, 202, 9064, 630, 040, 010, 577, 608, 003, 5005. сен—0, 147, 408, 404, 4006. сен—0, 577, 608, 403, 90 0, 180, 147, 912, 8464, 790, 050, 030, 406, 307, 903, 76 0, 220, 187, 922, 7864, 880, 050, 01 —- 0, 070, 047, 902, 8663, 710, 070, 040, 406, 307, 903, 76 —8, 173, 5856, 07 —0, 367, 508, 404, 15 **) Ï ÀÓ í å äî çèðî âàëñÿ Ср. знач. за период дозирования Hydraffin SC 14 FF общий органический углерод по данным ЦИКВ Изменение содержания нефтепродуктов и перманганатной окисляемости в процессе использования ПАУ на ВВС нефтепродукты по данным ЦИКВ *) Ï åðåõî ä í à í î âóþ ï àðòèþ Ï ÀÓ Î Ó-À (ï ðî èçâî äñòâî Î ÀÎ «Ñî ðáåí ò», ã. Ï åðì ü) хлороформ по данным ЦИКВ Ср. знач. за период без дозирования ПАУ нефтепродукты по данным НИЦЭБ РАНперманганатная окисляемость по данным ЦИКВ Ср. знач. за период дозирования ПАУСр. знач. за период дозирования ОУ-А

Виды антропогенных загрязнений и их основные свойства Физико-химические методы водоподготовки

Состав и производительность водопроводных очистных сооружений ЮВС Станция имеет собственный водозабор. Существует возможность приема сырой воды на очистные сооружения от насосной станции 1 -го подъема Северной водопроводной станции. В состав станции входит: Два насосных отделения 1 -го подъема, проектной производительностью: 1 н. о. – 745 т. м 3 /сут. 2 н. о. – 625 т. м 3 /сут. Основной технологический процесс обработки воды осуществляется на пяти параллельно работающих блоках: двух блоках фильтровально-отстойных сооружениях (ФОС-1 и ФОС-2) и трех блоках контактных осветлителей (БКО-1, БКО-2, БКО-3). Параметр Единица измерения ФОС-1 ФОС-2 БКО-1 БКО-2 БКО-3 К-6 Проектная производительность тыс. м 3 /сут. 180 260 310 250 350 Год ввода в эксплуатацию 1933 1947 1966 1980 1990 11. 2010 *) Приведенная производительность 99 99 230 182 184 — Четыре насосных отделения 2 -го подъема, проектной производительностью: 2 н. о. – 220 т. м 3 /сут. 3 н. о. – 350 т. м 3 /сут. 4 н. о. – 430 т. м 3 /сут. 5 н. о. – 550 т. м 3 /сут. *) На полную мощность блок К-6 выведен в мае 2011 г. Восемь резервуаров чистой воды общим объемом 113 000 м

Технология обработки воды на ЮВС Основные реагентные и безреагентные технологические процессы, применяемые при обработке воды: Сорбция органических загрязняющих веществ с использованием порошкообразного активированного угля Двухступенчатое обеззараживание (первичное хлораммонирование воды с использованием гипохлорита натрия и сульфата аммония, обработка воды на УФ-установках перед подачей воды потребителю) Коагуляция загрязняющих веществ Флокуляция твердофазных частиц Обработка воды реализуется на очистных сооружениях, работающих по одноступенчатой (Блоки контактных осветлителей, БКО) или по двухступенчатой (фильтроотстойные сооружения, ФОС) схемам: Одноступенчатая схема (БКО) включает в себя: очистку от механических примесей на барабанных сетках; перемешивание реагентов в смесителях — сужающих устройствах; контактную коагуляцию в среде песчаной загрузке на контактных осветлителях, совмещенную с фильтрацией Двухступенчатая схема (ФОС) включает в себя: перемешивание воды с реагентами в каналах-смесителях коридорного типа; отстаивание в горизонтальных отстойниках; фильтрование на скорых фильтрах через зернистую загрузку (кварцевый песок).

Установка приготовления и дозирования порошкообразного активированного угля (ПАУ)

БЛОК К-6 Южной водопроводной станции Санкт-Петербурга главный технологический корпус, включающий блок осветления, блок фильтрации, озонаторную

Общая характеристика комплекса очистных сооружений К-6 для производства питьевой воды Новый комплекс К-6 Южной водопроводной станции рассчитан на производство номинального суточного объёма воды, равного 350 000 м 3 /сутки при режиме работы 24 часа Комплекс производит питьевую воду требуемого качества при любом расходе с производительностью от 20% до 125% от номинальной Качество очищенной воды соответствует — Российским стандартам питьевой воды: Нормы Сан. Пин — Европейским стандартам питьевой воды: Стандарт ЕЕС В новом комплексе использованы новые современные технологии и оборудование — предварительное озонирование — фильтры с двухслойной загрузкой песок/активированный гранулированный уголь — обезвоживание осадка

Двухслойные скорые фильтры с загрузкой (песок / гранулированный активированный уголь) На блоке К-6 Южной водопроводной станции используется высокоэффективная система сорбционной доочистки воды с применением 1200 тонн АУ и производительностью по очищаемой воде до 350 тыс. тон в сутки. За последние два года, кафедрой ХТМИСТ с партнерами выполнено и находятся в стадии заключения 6 контрактов, связанных с процессами сорбционной очистки воды на объектах ГУП «Водоканал Санкт-Петербурга» .

Основные параметры фильтровальных сооружений Проектный расход 370 000 м 3 /сут. = 15 417 м 3 /час = 4, 28 м 3 /сек Макс. расход 462 500 м 3 /сут. = 19 217 м 3 /час = 5, 35 м 3 /сек Количество фильтров 20 Площадь фильтрации одного фильтра 105, 6 м 2 Общая площадь фильтрации (20 фильтров) 2112 м 2 Песчаный слой — глубина песчаного слоя 0, 6 м — коэффициент однородности 1, 4 — полезный диаметр зерен песка 0, 5 -0, 6 — объем песка на 1 фильтр 63, 36 м 3 — общий объем песка (20 фильтров) 1267, 2 м 3 Слой гранулированного активированного угля — глубина слоя ГАУ 1, 2 м — коэффициент однородности 1, 4 — полезный размер 0, 9 -1, 1 мм — объем ГАУ на 1 фильтр 126, 72 м 3 — общий объем ГАУ (20 фильтров) 2534 м 3 Расчетные значения скорости фильтрации: Скорость фильтрации проектном расходе 7, 3 м/час Скорость фильтрации проектном расходе при одном неработающем фильтре 7, 7 м/час Скорость фильтрации при максимальном расходе 9, 1 м/час Скорость фильтрации при максимальном расходе при одном неработающем фильтре 9, 6 м/часОбратная промывка фильтров Расход воды для обратной промывки 20 м/час – 35 м/час Скорость промывки воздухом 30 – 50 м/час Обратная промывка фильтров производится в две ступени: Первая ступень – Воздушная промывка в течение 2 -3 мин. Расход подаваемого сжатого воздуха составляет от 30 до 50 м 3 /час на 1 м 2 фильтрующего слоя. Вторая ступень – Обратная промывка водой со скоростью от 20 до 35 м 3 /м 2 /час в зависимости от температуры сырой воды. Продолжительность обратной промывки составляет приблизительно 15 -20 минут. Продолжительность фильтроцикла между обратными промывками составляет приблизительно 24 -48 часов. Объем воды для обратной промывки на один фильтр: Объем воды для обратной промывки при 20 м/час (105, 6 × 20 / 60) = 704 м 3 Макс. объем воды для обратной промывки при 35 м/час (105, 6 × 35 × 15 / 60) = 924 м 3 Средний объем воды для обратной промывки — 814 м 3 , допускается 800 м

Отличительные особенности технологического решения, использованного при очистке воды на блоке К-6 — отказ от предварительного хлорирования воды, что позволяет еще более снизить содержание в питьевой воде хлорорганических соединений (в настоящее время этот показатель более чем в три раза ниже нормативных требований за счет использования технологии аммонирования воды), — предварительное озонирование воды с малыми дозами озона, обеспечивающее поверхностное окисление гуминовых соединений и улучшение последующей их коагуляции, — отстаивание воды после коагуляции в тонкослойном пластинчатом отстойнике-осветлителе, обеспечивающем более эффективное удаление взвешенных веществ по сравнению с традиционными отстойниками, — фильтрация воды на двухслойных фильтрах, загруженных гранулированным активированным углем и кварцевым песком, обеспечивающая дополнительное удаление растворенных органических соединений, в том числе, нефтепродуктов.

Средние показатели качества воды, очищенной в ноябре 2011 г. на блоке К-6 и на других блоках ЮВС Показатель качества Нева Блок К-6 Остальные блоки ЮВС (суммарно) Эффективность очистки, % Блок К-6 Остальные блоки ЮВС (суммарно) Мутность, мг/дм 3 2, 26 0, 28 0, 58 87, 6 74, 3 Цветность, град. 37, 4 3, 55 5, 88 90, 5 84, 3 Окисляемость, мг/дм 3 7, 17 2, 03 2, 61 76, 8 70, 2 остат. алюминий, мг/дм 3 0, 06 0, 21 97, 6 *) 92, 8 *) р. Н 6, 62 6, 63 *) Рассчитано, исходя из количества вводимого коагулянта.

Бункеры хранения отработанного активированного угля Отработанный активированный уголь выводится из фильтров при помощи передвижной системы эдукторов, с использованием воды в качестве движущей силы. Уголь транспортируется в виде разжиженной пульпы в два дренажных силоса, расположенных в блоке обработки осадка. Отработанный уголь выводят из каждого фильтра и заменяют чистым, хранящимся на станции очистки воды. Полный цикл процесса реактивации продолжается приблизительно месяц, и включает в себя разгрузку одного из фильтров, наполнение контейнеров, транспортировку отработанного угля, реактивацию угля, обратную транспортировку на станцию очистки в больших пластиковых мешках и хранение до следующего цикла.

Хранение гранулированного активированного угля на блоке К-6 Хранилище свежего гранулированного активированного угля расположено рядом с корпусом переработки осадка. Там же находятся силосы для складирования отработанного активированного угля. Оба хранилища расположены на уровне первого этажа. Свежий или регенерированный уголь, упакованный в пластиковые мешки, прибывает на сооружения в трейлере и хранится в корпусе обработки осадка. Площадь для хранения нового или восстановленного активизированного угля определена из расчета хранения 126 м 3 угля плюс 5% запас на потери перегрузке. Для загрузки одного фильтра необходимы 126 м 3 активированного угля. Бункеры для отработанного активированного угля Емкость бункера (эффективная) 62 м 3 Диаметр бункера 4 м Высота бункера 7. 5 м Расстояние под бункером для подвоза контейнеров 3 м Материал бункера Волокнит (стеклопластик) Количество бункеров

Гранулированный уголь транспортируется в фильтры с помощью эжектора

Система загрузки активированного угля в фильтровальные сооружения блока К-6 Эжекторная система гидравлического транспорта свежего и регенерированного угля к фильтрам Основные расчетные данные: Объем активированного угля в одном фильтре 126. 72 м 3 Линейная скорость в трубопроводе разбавленной пульпы 1. 5 – 2. 0 м/сек Плотность пульпы 0. 12 кг угля / л воды Падение давления Около 5 мбар / 1 м трубопровода Расход активированного угля 9 м 3 /час Расчетное время транспортировки угля к одному фильтру 14 час Эжекторная система: Производитель: Koerting, Hannover Тип: Передвижной струйный эжектор для транспорта твердых частиц Кол-во единиц: 1 Вес: 38 кг Эжекторная система гидравлического транспорта отработанного угля от фильтров Линейная скорость в трубопроводе разбавленной пульпы 1. 5 – 2. 0 м/сек Плотность пульпы 0. 12 кг угля / л воды Падение давления Около 5 мбар / 1 м трубопровода Расход активированного угля 15 м 3 /час Расчетное время транспортировки угля от одного фильтра 8. 5 час Эжекторная система: Производитель Koerting, Hannover Тип Жестко закрепленный струйный эжектор для транспорта твердых частиц Кол-во единиц 1 Вес 38 кг Оба напорных трубопровода для транспортировки ГАУ проложены параллельно другу: из галереи фильтров, между блоком фильтров и реагентным хозяйством, и заканчивается в блоке обработки осадка. Транспортировка отработанного ГАУ с отдельного фильтра осуществляется при помощи технической движущей воды, которая нагнетается насосом транспортировки ГАУ, расположенном в насосной станции технической воды. Вода распределяется по галерее фильтров на каждый фильтр (фильтры соединяются через гибкие шланги с переносным эжектором ГАУ), и затем, через эжектор и наружный трубопровод транспортировки отработанного ГАУ уголь подается в бункеры отработанного ГАУ.

Характеристика ГАУ Filtrasorb TL 830 ГАУ марки Filtrasorb TL 830 является углем повышенной прочности, обеспечиваемой использованием специальных связующих при его изготовлении. Особая технология изготовления обусловливает относительно высокую цену ГАУ Filtrasorb TL 830 Важной особенностью блока К-6, обусловливающей эффективность его работы является необходимость поддержания на требуемом уровне сорбционной способности ГАУ, используемого в качестве загрузки (совместно с кварцевым песком) в скорых фильтрах блока. Плотность насыпная, не более 430 г/дм 3. Плотность сухого продукта (истинная плотность), 1, 2 г/см 3. Влажность, не более 2, 0 %. Зольность общая, не более 10, 0 %. Размер гранул d экв. = 0, 9 -1, 1 мм Прочность механическая (на истирание), не менее 75 %. Пористость (объем пор) общая, не менее 1, 0 см 3 /г. Удельная площадь поверхности по ВЕТ, 950 м 2 /г Осветляющая способность по метиленовому голубому – не менее 200 мг/г Адсорбционная активность по йоду, не менее 1000 мг/г. Сорбционные характеристики ГАУ Filtrasorb TL-

Исследования состояния ГАУ Filtrasorb TL 830 в процессе его эксплуатации на блоке К-6 По данным организации-поставщика технологии срок работы ГАУ Filtrasorb TL 830 до реактивации составляет 3 года. По истечении этого срока поставщик технологии (фирма TAHAL, Израиль) рекомендует выполнять реактивацию ГАУ. В результате работ, выполненных специалистами кафедры «Химической технологии материалов и изделий сорбционной техники» установлено, что состояние ГАУ Filtrasorb TL 830, загруженного в скорые фильтры блока, существенно отличается от первоначального состояния свежего угля. Установлено снижение сорбционной активности ГАУ в процессе его эксплуатации на блоке К-6 ЮВС. Скорость снижения сорбционной активности ГАУ Filtrasorb TL 830 в условиях его эксплуатации на блоке К-6 ЮВС составляет: — по метиленовому голубому – 4, 25 мг/г в месяц, — по йоду – 25 мг/г в месяц, — по перманганатной окисляемости – 0, 0175 мг/г в месяц. Выполненные работы показали, что к лету 2013 г. сорбционная активность ГАУ, загруженного в скорые фильтры блока К-6, составит менее 25 % от начальных значений. Снижение сорбционной активности ГАУ Filtrasorb TL 830 до значений, составляющих менее 20 % от первоначальной сорбционной активности угля, приведет к его безвозвратной потере, поскольку проведение реактивации и дальнейшая эксплуатация угля станут невозможными. В этом случае потребуется полная замена отработанного сорбента свежим, что, как показано ниже, приведет к экономическому ущербу для предприятия ГУП «Водоканал Санкт-Петербурга» .

Пути сохранения функционального состояния скорых фильтров блока К-6 В ходе выполнения работ специалистами кафедры «Химической технологии материалов и изделий сорбционной техники» рассмотрены три варианта сохранения функционального состояния скорых фильтров блока К-6: 1) Проведение последовательной реактивации ГАУ путем поэтапной выгрузки из действующих скорых фильтров и проведения его реактивации на специализированном промышленном предприятии. При этом должно быть обеспечено сохранение производительности блока К-6 по обрабатываемой воде (одновременно необходимо выгрузить и реактивировать ГАУ только из одного скорого фильтра). 2) Перегрузка фильтровальных сооружений кварцевым песком (переход к использованию однослойной загрузки и к отказу от использования сорбционного метода очистки воды). При этом должно быть обеспечено сохранение производительности блока К-6 по обрабатываемой воде (одновременно необходимо перегружать ГАУ только в одном скором фильтре). 3) Перегрузка верхнего слоя фильтровальных сооружений (ГАУ) свежим гранулированным углем Filtrasorb TL 830. При этом должно быть обеспечено сохранение производительности блока К-6 по обрабатываемой воде (одновременно необходимо заменять ГАУ на кварцевый песок только в одном скором фильтре).

Процесс реактивации включает четыре термических стадии: * Высушивание при 100°C: удаление воды. * Термическое выпаривание при 100 -250°C: физическая десорбция адсорбированной летучей органики. * Образование карбонизата при 200 -750°C: пиролиз нелетучей органики и карбонизация пиролизата. * Газификация карбонизата при 800 -1000°C: газификация пиролизата путем контролируемой реакции с водяным паром, двуокисью углерода или кислородом. Реактивация — возврат отработанного угля в производство с активностью, достаточной для использования в процессе, для которого он исходно предназначался. Реактивация = Возврат в производство путем термической реактивации Регенерация = Многократное использование путем обработки паром или методом химической регенерации в месте применения. Реактивация активированного угля состоит из: Выгрузки угля из адсорбера Обработки в специальной печи при высоких температурах Восполнения потерь Перезагрузки угля в фильтры

Сводные технико-экономические результаты вариантов организации работы фильтровальных сооружений блока К-6 после выработки сорбционного ресурса ГАУ По данным организации-поставщика технологии срок работы ГАУ Filtrasorb TL 830 до реактивации составляет 3 года. По истечении этого срока поставщик технологии (фирма TAHAL, Израиль) рекомендует выполнять реактивацию ГАУ. вариант организации работы фильтровальных сооружений размер капитальных затрат, тыс. руб. ожидаемое увеличение эксплуатационных затрат, тыс. руб. ожидаемое увеличение себестоимости очищаемой воды, руб. /м 3 уровень риска *) Перегрузка верхнего слоя скорых фильтров свежим ГАУ 114 203, 61 **) — 0, 36 **) 2 Перегрузка верхнего слоя скорых фильтров кварцевым песком 23 919 634 158 865 0, 45 9 Перегрузка верхнего слоя скорых фильтров реактивированным ГАУ 68 163 800, 6 — 0, 15 3 Примечания: *) Уровень риска оценен по сравнительной 10 -бальной шкале (0 – отсутствие риска, 10 – сильнейший, недопустимый риск), **) Представлен минимальный размер показателя приобретении ГАУ в ООО НПП «Полихим» . При приобретении ГАУ у других поставщиков размер показателя будет выше.

Информация об ООО «НПП «Полихим» НПП «Полихим» – одно из ведущих предприятий по изготовлению модифицированных углеродных сорбентов на Северо-Западе России. В составе предприятия имеются следующие подразделения: 1. Цех по производству углеродных сорбентов 2. Цех по изготовлению оборудования из пластика 3. Участок по антикоррозионной защите стального оборудования 4. Проектный отдел 5. Конструкторский отдел 6. Сметный отдел 7. Исследовательская лаборатория 8. Участок монтажа и пуско-наладки Годовой выпуск продукции в настоящее время составляет 600 т/год при номинальной производительности электропечей. Эти же печи могут быть использованы для проведения реактивации активированных углей. ← Электропечь ЭВП-300 в производственном здании ООО НПП «Полихим» Э лектропечь ЭВП-300 М в производственном здании ООО НПП «Полихим» →Предприятие имеет собственное производство и выпускает гранулированные активированные угли для тонкой очистки воды под марками МАУ-200, МАУ-3 ПТ, МАУ-6 А. Технология получения активных углей данных марок была разработана при непосредственном участии Санкт-Петербургского государственного технологического института (технического университета), в частности, кафедры «Химической технологии материалов и изделий сорбционной техники» .

Проведение пробной реактивации ГАУ Filtrasorb TL 830 на производственных мощностях ООО «НПП «Полихим» Гранулированные активированные угли могут быть легко регенерированы в ООО НПП «Полихим» наиболее распространенным стандартным методом (паром) Проведение процесса реактивации угля паром в электропечи ЭВП-300 Реактивированный уголь (в результате проведения реактивации в печи ЭВП-300). В соответствии с условиями договора между ГУП «Водоканал Санкт-Петербурга и СПб. ГТИ (ТУ) на производственной площадке ООО НПП «Полихим» в сентябре-ноябре 2012 г. выполнена опытно-промышленная реактивация отработанного ГАУ Filtrasorb TL-830 в количестве 0, 5 т.

Результаты проведения пробной реактивации ГАУ Filtrasorb TL 830 на производственных мощностях ООО «НПП «Полихим» Реактивация отработанного ГАУ Filtrasorb TL-830 из скорых фильтров блока К-6 ЮВС позволяет восстановить параметры структуры ГАУ и даже улучшить эти параметры (при двухкратной реактивации) не только по сравнению с параметрами отработанного материала, но и по сравнению с параметрами исходного свежего образца угля Filtrasorb TL-830 Ws – суммарный объем пор, Vми – объем микропор, Vме – объем мезопор. Образец Ws, см 3 /г Vми, см 3 /г Vме, см 3 /г TL-830 (лот 8613 E 008), исходный (свежий уголь) 0, 467 0, 374 0, 093 Образец отработанного TL-830 (14. 08. 12) 0, 433 0, 359 0, 074 Образец реактивированного TL-830 (14. 08. 12) 0, 508 0, 462 0, 046 Партия отработанного TL-830 (13. 09. 12) 0, 403 0, 355 0, 048 Партия реактивированного TL-830 (13. 09. 12), однократная реактивация 0, 446 0, 420 0, 026 Партия реактивированного TL-830 (13. 09. 12), двухкратная реактивация 0, 547 0, 499 0, 048 Полученные результаты объясняются тем, что производитель ГАУ (Chemviron Carbon) с целью обеспечения продолжительного общего срока эксплуатации ГАУ Filtrasorb TL-830, основанного на использовании многократных процессов его реактивации, выпускает недоактивированный продукт, закладывая тем самым возможность сохранения его сорбционных и эксплуатационных свойств при многократной реактивации.

Параметры пористой структуры образцов ГАУ Filtrasorb TL-830 до и после реактивации Наблюдаемое снижение механической прочности ГАУ в процессе реактивации связано с удалением незначительной доли связующего компонента, происходящим в процессе реактивации. Тем не менее, механическая прочность реактивированных образцов ГАУ Filtrasorb TL-830, составляющая 78 -80 %, незначительно отличается от механической прочности исходного угля (84 -85 %), что обеспечивает возможность его дальнейшей эксплуатации без какого-либо снижения эксплуатационных характеристик. Wо – измеренный объем сорбционного пространства, Ео – энергия адсорбции по бензолу. В процессе реактивации восстанавливается и даже повышается по сравнению с образцом свежего ГАУ сорбционная активность по метиленовому голубому и значение йодного числа. образец W 0 , см 3 /г Е 0 , к. Дж/моль ЙЧ, мг/г Сорбционная активность по МГ, мг/г Мех. прочность, % TL-830 (лот 8613 E 008), исходный (свежий уголь) 0, 378 25, 4 927 198 84 Образец отработанного TL-830 (14. 08. 12) 0, 369 20, 8 759 98 80 Образец реактивированного TL-830 (14. 08. 12) 0, 476 25, 6 1080 213 78 Партия отработанного TL-830 (13. 09. 12) 0, 369 20, 2 689 94 85 Партия реактивированного TL-830 (13. 09. 12), однократная реактивация 0, 444 22, 7 1016 211 80 Партия реактивированного TL-830 (13. 09. 12), двухкратная реактивация 0, 509 26,

Выводы по результатам выполненных исследований Оптимальным решением по организации работы фильтровальных сооружений блока К-6 после выработки сорбционного ресурса ГАУ является проведение реактивации угля в сторонней организации с последующей его загрузкой в скорые фильтры блока и повторным использованием. В качестве сторонней организации для проведения реактивации отработанного угля из скорых фильтров блока К-6 рекомендуется ООО НПП «Полихим» . Данная организация отличается 1) высоким качеством выполнения производственного процесса реактивации ГАУ, установленного проведением пробной реактивации партии ГАУ Filtrasorb TL-830, отобранного из действующих скорых фильтров блока К-6, 2) наименьшей стоимостью реактивации среди российских предприятий аналогичного профиля, 3) наиболее близким расположением по отношению к Южной водопроводной станции Санкт-Петербурга. Размер затрат на комплекс мероприятий по реактивации отработанного ГАУ из скорых фильтров блока К-6 и перегрузке фильтров реактивированным углем составляет приблизительно 68 млн. руб. , что почти в 2 раза ниже размера капитальных затрат на замену отработанного ГАУ свежим углем. Осуществление комплекса мероприятий по реактивации отработанного ГАУ из скорых фильтров блока К-6 и перегрузке фильтров реактивированным углем будет сопровождаться наименее значительным увеличением себестоимости очищенной на блоке К-6 воды, составляющим 15 коп на 1 м 3 , что в 2 раза меньше, чем аналогичный показатель, достигаемый при замене отработанного ГАУ свежим углем и в 3 раза меньше, чем при замене отработанного ГАУ кварцевым песком. Замена отработанного ГАУ из скорых фильтров блока К-6 кварцевым песком не рекомендуется ввиду неизбежного резкого ухудшения качества очистки воды на блоке К-6 и связанного с этим экономического и материального ущерба для ГУП «Водоканал Санкт-Петербурга» .

Февраль 3, 2005

В настоящее время для очистки промышленных сточных вод используются различные технологии. В наиболее распространенной является реагентная, при которой ионы тяжелых металлов (Cr 3+ , Ni 2+ , Cu 2+ , Zn 2+ , Cd 2+ , Fe 3+ и др.) с помощью щелочного реагента переводятся в практически нерастворимые гид­роксиды этих металлов и выделяются из водной среды отстаиванием и фильтрованием. В качестве щелочных реагентов, вво­димых в очищаемый сток, ис­пользуются сода (кальцинированная или каустическая) или гашеная известь Са(ОН) 2 (известковое молоко).

Реагентный метод очистки сточных вод имеет ряд недостатков.

Во-первых, кон­центрация ионов тяжелых металлов и водородный показатель (рН) в сточных водах постоянно изменяются. Технология корректировки рН весьма инерционна и не может обеспечить своевременное изменение требуемой дозы щелочного реагента. Это обстоятельство приводит к неполному переводу ионов тяжелых металлов в их гидроксиды и проскоку этих ионов за пределы очистных сооружений в составе очищенных сточных вод. Причем концентрации тяжелых металлов при их проскоках в виде ионов могут в десятки раз превышать ПДК. Во-вторых, при применении реагентов возрастает и без того высокое солесодержание очищенных сточных вод, что может служить дополнительным препятствием при повторном их использовании в технологических операциях.

Перевод ионов тяжелых металлов в их гидроксиды сам по себе хороший технологический способ, но реализация его посредством добавления щелочного реагента с последующим отстаиванием и фильтрованием через обычные песчаные фильтры значительно снижает эффективность и надежность Как правило, очищенные сточные воды повторно использоваться не могут из-за низкого их качества.

Проблема обеспечения высококачественной очистки загрязненных сточных вод должна решаться путем упрощения технологической схемы, конструктивного оформления и эксплуатации водоочистных сооружений при одновременном повышении степени очистки, универсальности, надежности, а также экологической безопасности технологического процесса, возможности максимальной и даже полной автоматизации его.

В свете изложенных требований среди известных методов очистки сточных вод гальванических цехов до заданных нормативов (ионообменный, мембранный, сорбционный) наи­более перспективным представляется сорбционный при условии, что применяемый в технологическом процессе очистки адсорбент способен длительное время (месяцами и даже годами) выполнять свои функции водоочистителя, т. е. очищать фильтруемую через него воду от всего комплекса находящихся в ней вредных примесей при восстановлении сорбционной активности адсорбента посредством регенерации, осуществляемой непосредственно в фильтровальном сооружении.

Сорбционный метод очистки природных и сточных вод с использованием активированных углей и цеолитов известен давно. Однако широкого распространения он не нашел вследствие того, что данные адсорбенты являются фильтрующими материалами разового использования. Регенерация активированных углей и цеолитов дорогостоящая и трудоемкая операция и в условиях действующих водоочистных сооружений практически не осуществима, потому что требуются выгрузка материала из фильтра, активация его за пределами водоочистной станции на специальной установке, доставка отрегенерированного материала обратно на водоочистную станцию и загрузка его в фильтровальное сооружение. Если пойти по пути разового использования адсорбентов, то кроме колоссальных затрат на замену материала возникает вероятность экологической опасности, так как для надежного захоронения отработанного загрязненного адсорбента в огромном количестве требуются большие экономические затраты.

Недостатки сорбционного метода очистки сточных вод

Эксплуатационные и экономические недостатки сорбционного метода очистки природных и сточных вод традиционными адсорбентами устраняются при использовании в технологическом процессе водоочистки адсорбента, обладающего высокой поверхностной активностью зерен, позволяющего восстанавливать сорбционную способность посредством технологически не­сложной, непродолжительной по времени регенерации, проводимой непосредственно в фильтровальном сооружении. Наиболее эффективной основой для получения адсорбентов с целенаправленно ре­гулированными свойствами могут служить алюмосиликатные минералы, так как в их структуру можно вводить практически любые добавки органического и минерального происхождения, которые будут придавать поверхности зерен требуемые свойства.

Отличительным и положительным свойством этих минералов является «дефектность» их кристаллической решетки и способность к катионному замещению. Слоистая тетраэдооктаэдрическая структура алюмосиликатов позволяет принимать катионы не только в свою кристаллическую решетку, но и в межслоевые и межплоскостные пространства, а также на базальные плоскости частиц минерала. В качестве таких обменных ка­тионов могут служить магний и кальций, которые имеют слабые связи с поверхностью частиц ми­нерала и в водной среде достаточно легко переходят в раствор.

Катионы магния и кальция, как показали многолетние иссле­дования на кафедре «Водоснабжение и водоотведение» Пе­тербургского государственного университета путей сообщения, выполняют основную роль в ходе процесса сорбционного извлечения загрязнений сточных вод, участвуя вначале (посредством химического воздействия) в образовании новых соединений, а затем в создании коллоидных структур этих соединений на по­верхности зерен адсорбента и в межзерновом поровом пространстве. Поэтому при изготовлении алюмосиликатного адсорбента в сырье в качестве активирующей добавки вводят соединения магния и кальция.

Важными технологическими особенностями активированного алюмосиликатного адсорбента являются:

  • способность к ионному обмену щелочноземельных и щелочных металлов (Mg 2+ , Ca 2+ , Na +) благодаря «дефектности» кристаллической решетки катионита, из которого изготавливается адсорбент;
  • увеличение водородного показателя до 9 в профильтрованной через адсорбент воде;
  • возникновение положительного ζ -потенциала на границе раздела «зерно адсорбента – жидкость» при фильтровании воды через слой адсорбента;
  • восстановление сорбционной активности активированного алюмосиликатного адсорбента по отношению к ионам тяжелых металлов путем регенерации, проводимой непосредственно в фильтровальном сооружении.

При изготовлении активированного алюмосиликатного адсорбента благодаря природной ионообменной способности алю­мосиликатной основы происходит замещение части трехвалентного алюминия катионами магния и кальция, входящими в состав активатора, а также заполнение «вакансий» в узлах кристаллической решетки и в межслоевом пространстве выше­указанными катионами. В результате такого целенаправленного модифицирования и активирования алюмосиликатного сырья получается гранулированный материал, который при фильтровании воды через зернистый слой образует слабощелочную среду и положительный электрокинетический потенциал. Предпосылкой для создания щелочной среды являются оксиды магния и кальция, образующиеся в структуре адсорбента в процессе его изготовления. Оксиды магния и кальция образуют в воде гидроксиды, повышая таким образом рН за счет избытка анионов ОН – . Катионы тяжелых металлов, попадая в щелочную среду, вступают в реакцию и образуют труднорастворимые гидроксиды по схеме:

Ме 2+ + 2ОН – ® Ме(ОН) 2 ¯;

Ме 3+ + 3ОН – ® Ме(ОН) 3 ¯.

Произведение растворимости гидроксидов тяжелых металлов значительно меньше (в десятки и в сотни раз) произведения растворимости гидроксидов магния и кальция, поэтому равновесие химического взаимодействия смещается в сторону образования труднорастворимых гидроксидов тяжелых металлов. Кроме того из адсорбента в воду диффундируют обменные катионы Mg 2+ и Ca 2+ , также способствующие повышению рН среды за счет избыточных анионов ОН – , связываемых в дальнейшем в гидроксиды тяжелых металлов. Диффузия катионов Mg 2+ и Ca 2+ возможна благодаря непрочности связей с кристаллической решеткой катионита. Таким образом, формируются мицеллы гидроксидов тяжелых металлов с дальнейшим укрупнением их в агрегаты, образованием и ростом коллоидной структуры за счет сил электростатического взаимодействия между положительно заряженной поверхностью зерен адсорбента и отрицательно заряженными мицеллами гидроксидов тяжелых металлов.

В процессе фильтрационного извлечения из воды ионов тяжелых металлов активная часть адсорбента, состоящая из катионов магния и кальция, продуцируя в водную среду, постепенно уносится вместе с фильтратом. Наступает момент, когда очистительные (защитные) функции адсорбента становятся недостаточными, и концентрация выносимых с фильтратом ионов тяжелых металлов превышает установленные ПДК. Требуется активация адсорбента, т. е. восполнение ушедших вместе с водой обменных катионов.

При выборе активатора для восстановления сорбционных свойств адсорбента учитывались три наиболее важных фактора:

  1. во-первых, активатор должен растворяться в воде, чтобы активацию проводить раствором непосредственно в фильтровальном сооружении;
  2. во-вторых, ионообменный катион в ряду активности катионов должен быть расположен выше, чем кальций и магний;
  3. в-третьих, этот катион должен обладать щелочными свойствами и быть легко доступным для практического использования. Всем этим условиям в наибольшей степени отвечает катион натрия Na + в составе кальцинированной соды.

Как показала практика эксплуатации, обработка активированного алюмосиликатного адсорбента 3−4-процентным раствором кальцинированной соды в циркуляционном режиме в течение 30-35 мин восстанавливает защитные свойства адсорбента независимо от количества проведенных циклов регенерации, т. е. в течение длительного срока эксплуатации. Восстановление сорбционной активности фильтрующей загрузки осуществляется обработкой 3−4-процент­ным раствором кальцинированной соды в режиме циркуляции с интенсивностью 3 л×с/м 2 . Регенерационный раствор используется многократно. Перед восстановлением необходимо промыть фильтрующую загрузку водой с интенсивностью 14 л×с/м 2 .

В 2004 г. в ГУ «Городской ла­бораторный центр государствен­ного санитарно-эпидемиологиче­ского надзора» (С.-Петербург) были проведены исследования (торговая марка «Глинт»). Для исследования эффективности работы адсорбента «Глинт» в качестве исходной пробы использовалась дистиллированная вода, приготовленная с добавлением реактивов, содержащих металлы: сульфаты никеля, кадмия, марганца, цинка, меди и хрома, железо треххлористое, свинец азотнокис­лый. Как показывают результаты исследований, адсорбент «Глинт» обладает способностью значительно снижать концентрации ионов тяжелых металлов в водных растворах (таблица).

Технология очистки промыш­ленных сточных вод с использованием активированного алюмосиликатного адсорбента реализо­вана:

  • для гальванического производства на ФГУП «Рязанский приборный завод»,
  • для аккумуляторного завода в ЗАО «Электро­тяга» (С.-Петербург),
  • ОАО «Завод по выпуску алмазного инструмента» (г. Томилино Московской обл.),
  • АО «Муромский радиозавод» (г. Муром),
  • ОАО «Ступинский металлургический комбинат» (г. Ступино Московской обл.),
  • ОАО «Измеритель» (г. Смоленск)
  • и на ряде других предприятий.

Например, в ОАО «Ступинская металлургическая компания» (г. Ступино Московской обл.) с 2000 г. эксплуатируются напорные фильтры производительностью 3500 м 3 /сут, загруженные активированным алюмосиликатным адсорбентом (пять фильтров по 16 м 2). Состав загрязнений, поступающих на фильтры, мг/л: нефтепродуктыдо 20, Cr 3+ до 10, Cu 2+ до 5, Fe 3+ до 10, Al 3+ до 5, Ni 2+ до 10, Zn 2+ до 5, рН 6-7,5. Состав фильтрата соответствует значениям ПДК вредных веществ для водоемов рыбохозяйственного назначения. Регенерация адсорбента производится через 5-7 суток 3-про­центным раствором кальцинированной соды. Износ адсорбента составляет около 5 %в год. Себестоимость очистки 1 м 3 сточных вод (по данным предприя­тия) – 4,5 руб.

На этом и других предприя­тиях используется активированный алюмосиликатный адсорбент со следующими характеристиками (по ГОСТ 51641−2000 «Материалы фильтрующие зернистые. Общие технические указания»): размер зерна 0,63–2 мм, объемная масса 0,95–1 г/см 3 , измельчаемость до 0,5, истираемость до 5, удельная рабочая по­верхность9-12 м 2 /г, минимальное значение рН фильтруемой воды6.

Выводы

Опыт промышленной эксплуатации указанных объектов показывает, что технологический процесс сорбционной очистки сточных вод отличается надежностью и экономичностью при высоком качестве. Как правило, очищенные сточные воды повторно используются на технологические нужды. Переход предприятий на замкнутый цикл водоснабжения улучшит экологическую обстановку в регионе, обеспечит рациональное использование водных ресурсов.

Е. Г. ПЕТРОВ, профессор (Петербургский государственный университет путей сообщения);
Д. С. КИРИЧЕВСКИЙ, директор ЗАО «Квант Минерал» (С.-Петербург)