Все о стройке и ремонте

Модуль Пельтье: технические характеристики. Полупроводниковые холодильники пельтье Применение эффекта пельтье

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Эффект Пельтье — термоэлектрическое явление, при котором происходит выделение или поглощение тепла при прохождении электрического тока в месте контакта (спая) двух разнородных проводников.

Эффект Зеебека — явление возникновения ЭДС в замкнутой электрической цепи, состоящей из последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах.

Оба этих эффекта открыты в XIX веке: Ж. Пельтье в 1834 году, суть явления исследовал несколькими годами позже — в 1838 году Ленц, который провёл эксперимент, в котором он поместил каплю воды в углубление на стыке двух стержней из висмута и сурьмы. Т. И. Зеебеком открыл одноименный эффект в 1821. В 1822 году он опубликовал результаты своих опытов в статье «К вопросу о магнитной поляризации некоторых металлов и руд, возникающей в условиях разности температур», опубликованной в докладах Прусской академии наук

Меня заинтересовала эта тема потому, что элементы, придуманные в далёком в XIX веке, до сих пор эффективно используются в современных устройствах. Несмотря на то, что в каждом конкретном случае подбирается элемент с нужными параметрами, теория и источники говорят о том, что элементы взаимозаменяемы. Так это или нет, мы планируем проверить в своём исследовании.

Постановка проблемы:

Оба эффекта (эффект Пельтье и эффект Зеебека) имеют широкое применение в современной технике, а принцип работы элементов, созданных на их основе доступен для понимания в рамках изучения школьного курса физики. Между тем, эти эффекты не упоминаются в школьном курсе физики. Данная работа, кроме прикладного значения, имеет и важный методологический аспект, связанный с включением в школьный курс описания различных достижений науки.

Гипотеза исследования: существуют различия при использовании прямого и обратного эффектов Пельтье и Зеебека.

Цель исследования: выявление отличительных особенностей эффектаПельтье и эффекта Зеебека при их использовании в прямом и обратном направлении.

Задачи исследования:

Изучить историю открытия эффекта Пельтье и эффекта Зеебека.

Изучить особенности прямого и обратного эффекта Пельтье, прямого и обратного эффекта Зеебека.

Создать установку для проведения эксперимента.

Провести серию экспериментов по проверке гипотезы.

Провести анализ результатов эксперимента и сделать вывод о том подтвердилась гипотеза или нет.

Объект исследования: элемент Пельтье и элемент Зеебека.

Предмет исследования: особенности прямого и обратного эффекта эффекта Пельтье и прямого и обратного эффекта Зеебека.

Методы исследования

В исследовании применялись следующие методы:

1. Теоретические:

Анализ источников информации по истории открытия рассматриваемых в работе эффектов Пельтье и Зеебека,

Анализ сведений о принципе действия элементов Пельтье и Зеебека,

Анализ полученных экспериментальных данных.

Неполная индукция: формулировка вывода на основе данных, не охватывающих всех аспектов и возможных комбинаций характеристик исследуемых объектов.

2. Эмпирические:

Проведение серии экспериментов с целью проверки гипотезы.

Данное исследование относится к прикладным. Результаты исследования дадут ответ об эффективности возможности взаимозаменяемости элементов Пельтье и Зеебека.

Анализ источников

При описании исследуемы эффектов все источники упоминают что существует «эффект Пельтье и его обратный эффект, так называемый, эффект Зеебека» , при этом об обратном эффекте Зеебека не упоминается. В ходе этой работы, кроме обнаружения прямого и обратного эффектов Пельте и сравнения обратного эффекта Пельтье с прямым эффектом Зеебкека, мы проверим существование обратного эффекта Зеебека.

Об актуальности исследуемого вопроса говорит, то внимание, которое уделяют изучению этих эффектов зарубежные учебники . В них даётся не только описание рассматриваемых эффектов, но и их объяснение, а так же рассказывается об их применении.

Сайт российского производителя учебного оборудования ООО «3Б Сайнтифик» предлагает лабораторную установку «Эффект Зеебека» стоимостью 229 873,00 руб. , к которой прилагается методическая разработка. После её изучения мы пришли к выводу, что подобный эксперимент можно провести на оборудовании, не требующего столь высоких затрат.

Основная часть Эффект Пельте

Эфеект Пельтье - термоэлектрическое явление переноса энергии при прохождении электрического тока в месте контакта (спая) двух разнородных проводников, от одного проводника к другому. Также является обратным эффектом эффекта Зеебека, но при этом может выполнять и его функции .

При нагревании одной стороны и охлаждении другой стороны данный элемент может выделять электричество. И также данный элемент имеет и обратный эффект, то есть, при подключению этого элемента к электричеству одна сторона будет охлаждаться, а другая нагреваться.

Причина возникновения явления Пельтье заключается в следующем. На контакте двух веществ имеется контактная разность потенциалов, которая создаёт внутреннее контактное поле. Если через контакт протекает электрический ток, то это поле будет либо способствовать прохождению тока, либо препятствовать. Если ток идёт против контактного поля, то внешний источник должен затратить дополнительную энергию, которая выделяется в контакте, что приведёт к его нагреву. Если же ток идёт по направлению контактного поля, то он может поддерживаться этим полем, которое и совершает работу по перемещению зарядов. Необходимая для этого энергия отбирается у вещества, что приводит к охлаждению его в месте контакта.

Эффект Зеебека

Эффект Зеебека- явление возникновения ЭДС в замкнутой электрической цепи, состоящей из последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах .

Если вдоль проводника существует градиент температуры, то электроны на горячем конце приобретают более высокие энергии и скорости, чем на холодном; в полупроводниках, в дополнение к этому, концентрация электронов проводимости растет с температурой. В результате возникает поток электронов от горячего конца к холодному. На холодном конце накапливается отрицательный заряд, а на горячем остаётся нескомпенсированный положительный заряд. Процесс накопления заряда продолжается до тех пор, пока возникшая разность потенциалов не вызовет поток электронов в обратном направлении, равный первичному, благодаря чему установится равновесие.

ЭДС, возникновение которой описывается данным механизмом, называется объёмной ЭДС.

Особенности элементов Пельтье и Зеебека

Главной особеностью данных элементов является то, что элемент Пельтье имеет обратный эффект, а вот элемент Зеебека не имеет. И это не смотря на то что обратным эффектом элемента Пельтье является эффект элемента Зеебека.

В результате широкое применение в различных областях получил эффект Зеебека.

Элемент Пельтье является полной противоположностью устройствам, созданным на основе эффекта Зеебека. В данном случае, наоборот, под действием электрического тока образуется разница температур на рабочих площадках конструкции. Таким образом, с помощью электрического тока осуществляется перенос тепла с одной термопары на другую. При изменении направления тока нагреваемая сторона будет принимать противоположное состояние.

Данный эффект происходит в двух разнородных проводниках с одинаковой проводимостью. В каждом из них электроны обладают разным значением энергии и расположены они на очень близком расстоянии между собой. В результате произойдет перенос зарядов из одной среды в другую, и электроны с более высокой энергией на фоне низких уровней, отдадут излишки кристаллической решетке, вызывая нагрев. При недостатке энергии она, наоборот, передается от кристаллической решетки, приводя к охлаждению спая.

Применение эффекта Пельтье и эффекта Зеебека

Изучаемые эффекты применяются для создания термодатчиков, термоэлектрогенераторов, а также используются в комьютерах для улучшения охлаждения процесора.

В настоящее время эффект Зеебека применяется в интегрированных датчиках, в которых соответствующие пары материалов наносятся на поверхность полупроводниковых подложек. Примером таких датчиков является термоэлемент для обнаружения тепловых излучений. Поскольку кремний обладает достаточно большим коэффициентом Зеебека, на его основе изготавливаются высокочувствительные термоэлектрические детекторы.

Одно из значимых ограничений, возникающих при использовании термоэлектрического преобразователя, заключается в низком коэффициенте эффективности - 3-8%. Но если нет возможности для проведения стандартных линий электропередач, а нагрузки на сеть предполагаются небольшие, тогда применение термоэлектрических генераторов вполне оправдано. На самом деле, устройства, работающие на эффекте Зеебека, могут применяться в самых различных сферах:

1. Энергообеспечение космической техники;

2. Питание газо- и нефте- оборудования;

3. Бытовые генераторы;

4. Системы морской навигации;

5. Отопительные системы;

6. Эксплуатация отводимого автомобильного тепла;

7. Преобразователи солнечной энергии;

8. Преобразователи тепла, вырабатываемого природными источниками (например, геотермальными водами).

Эффект Пельтье используется в двух ситуациях: когда надо либо подвести тепло к месту соединения материалов, либо отвести его, что осуществляется изменением направления тока. Это свойство нашло свое применение в устройствах, где требуется осуществлять прецизионный контроль за температурой. Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температур, или энергетическая эффективность охладителя не важна. Например, элементы Пельтье применяются в маленьких автомобильных холодильниках, так как применение компрессора в этом случае невозможно из-за ограниченных размеров и, кроме того, необходимая мощность охлаждения невелика.

Кроме того элементы Пельтье применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счёт этого достигается заметное уменьшение теплового шума при длительных экспозициях (например в астрофотографии). Многоступенчатые элементы Пельтье применяются для охлаждения приемников излучения в инфракрасных сенсорах.

Также элементы Пельтье часто применяются:

1. Для охлаждения и термостатирования диодных лазеров, чтобы стабилизировать длину волны излучения;

2. В компьютерной технике;

3. В радиоэлектрических устройствах;

4. В медицинском и фармацевтическом оборудовании;

5. В бытовой технике;

6. В климатическом оборудовании;

7. В термостатах;

8. В оптической аппаратуре;

9. Для управления процессом кристаллизации;

10. Как подогрев в целях отопления;

11. Для охлаждения напитков;

12. В лабораторных и научных приборах;

13. В ледогенераторах;

14. В кондиционерах;

15. Для получения электроэнергии;

16. В электронных счетчиках расхода воды.

Конечно, охлаждающие устройства Пельтье вряд ли подходят для массового использования. Они достаточно дорогие и требуют правильного режима эксплуатации. Сегодня это, скорее, инструмент для любителей разгона процессоров. Однако в случае необходимости сильного охлаждения процессоров кулеры Пельтье являются наиболее эффективными устройствами.

Появились сообщения об экспериментах по встраиванию миниатюрных модулей Пельтье непосредственно в микросхемы процессоров для охлаждения их наиболее критичных структур. Такое решение способствует лучшему охлаждению за счет снижения теплового сопротивления и позволяет значительно повысить рабочую частоту и производительность процессоров.

Работы в направлении совершенствования систем обеспечения оптимальных температурных режимов электронных элементов ведутся многими исследовательскими лабораториями. И системы охлаждения, предусматривающие использование термоэлектрических модулей Пельтье, считаются чрезвычайно перспективными.

Описание экспериментальной установки

Для проведения эксперимента была создана установка, позволяющая получить необходимые данные.

Для уменьшения теплообмена с окружающей средой необходимо создать термостат. В экспериментальной установке это достигнуто с помощью теплоизоляционных материалов, используемых при строительстве, в котром созданы две ванны, разделённые в одном случае элементов Пельтье, в другом случае элементом Зеебека. В качестве ванночки использовались влагонепроницаемые коробочки от сока. Гидроизоляция элементов достигнута с помощью клеевого пистолета.

Для проведения эксперимента были подобраны элементы Пельтье и Зеебека с близкими характеристиками: рабочее напряжение и мощность.

В качестве измерительных приборов для фиксирования температуры использовались мультиметры.

Значение напряжения снималось также с помощью мультиметра или вольтметра.

Методика проведения эксперимента

В зависимости от исследуемого элемента, в разные секции ванночек заливалась либо вода разной температуры (прямой эффект Зеебека и обратный эффекта Пельтье), либо вода одинаковой температуры для обнаружения прямого эффекта Пельтье и обратного эффекта Зеебека).

Показания датчиков температуры заносились в таблицу (приложение 1), на основе которой были построены графики зависимости напряжения от температуры.

Каждый эксперимент проводился в течении 7 - 10 минут.

Результаты эксперимента

На основании данных, полученных в ходе четырёх экспериментов, построены графики

В ходе эксперимента наблюдается прямой эффет Зеебека и обратный эффект Пельтье соответствующих элементов, значения напряжений на которых примерно одинаковы. Как видно из графика зависимость напряжения на элементе от разницы температур поверхностей аналогичны. Различие в значениях объясняется различием в характеристиках объектов.

Сравнение прямого эффекта Пельтье и обратного эффекта Зеебека

Обратный эффект Зеебека

Как видно из графика, с учётом погрешностей, связанных с конструктивными особенностями прибора (указано в инструкции) можно считать, что температура в ходе эксперимента не менялась, что говорит о том, обратный эффект Зеебека не зарегистрировано.

Об этом можно судить и по графику с добавление линии тренда

Прямой эффект Пельтье

Эксперимент подтвердил наличие прямого эффекта Пельтье: в одной части ванночки температура увеличивалась, в другой падала.

Аналогичный вывод следует из анализа изменения разности температур двух сторон элемента Пельтье.

Вывод:

Элемент Пельтье имеет как прямой, так и обратный эффектеы. Элмент Зеебека возможно использовать только в прямом направлении.

ЗАКЛЮЧЕНИЕ

При работе над исследованием на основе доступных источников изучена история и особенности прямого и обратного эффекта Пельтье, прямого и обратного эффекта Зеебека.

Создание эффективной установки позволило качественно провести запланированные эксперименты для подтверждена выдвинутой гипотезы.

В ходе исследования выявлены отличительные особенности эффектаПельтье и эффекта Зеебека при их использовании в прямом и обратном направлении.

Полностью подтвердилось предположение об отсутствии обратного эффекта Зеебека. Исходя из этого утверждения следует помнить, что такие элементы как элемент Пельтье и Зеебека эффективнее использовать по прямому назначению, хотя и существует возможность использования прямого эффета Зеебека и обратного эффекта Пельтье. При наличии конструктивных сходств, все-таки для соблюдения технологии следует работать с конкретным эффектом.

После детального изучения эффекта Пельтье можно сделать вывод: несмотря на то, что использование эффекта Пельтье требует дополнительных мер и исследований по изучению безопасного и рационального использования модулей Пельтье в качестве охлаждающих устройств, это явление чрезвычайно перспективно.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: Учеб. пособ.: Для вузов. В 10. т. Т. VIII. Электродинамика сплошных сред. - 4-е изд., стереот.-м.: Физматлит, 2000. - 656 с.

2. Наркевич И.И. Физика: Учеб./ И.И. Наркевич, Э.И. Вомлянский, С.И. Лобко. - Мн.: Новое знание, 2004. - 680 с.

3. Роуэлл Г., Герберт С. Физика / Пер. с англ. под ред. В.Г. Разумовского. - М.: Просвещение, 1994. - 576 с.: ил.

4. Сивухин С.Д. Общий курс физики.- М.: Наука, 1977.- Т.3. Электричество.- С.490-494.

5.. Физика: Энциклопедия./ Под. Ред. Ю.В. Прохорова. - М.: Большая Российская Энциклопедия, 2003. - 944 с.: ил., 2 л. цв.

6. Физическая энциклопедия, т. 5. Стробоскопические приборы - яркость/ Гл. ред. А.М. Прохоров. Ред. кол.: Д.М. Балдин, Большая Российская Энциклопедия, 1998. - 760 с.

7. Vladimir Lank, Miroslav Vondra. Fizika v kocke. - Ceska republika: FRAGMENT, 2000. - 120 с. Учебник для средней школы, Словацкая республика.

8. Tsokos K.A. Physics for the IB Diploma. Fifth edition. - UK: Cambridge Universyty Press, 2004. - 850 с. Учебник для программы международного бакалавриата

9. Сайт компании 3bscientific. [электронный ресурс]// https://www.3bscientific.ru/лабораторная-установка-эффект-зеебека-8000731-ue6020500-230,p_1440_28886.html (дата обращения: 18 февраля 2018 г.)

Приложение 1. Результаты экспериментов

Эксперимент 1. Прямой эффект Зеебека

Время t, с

Разница температур Δ t, о С

Напряжение U, В

Эксперимент 2. Обратный эффект Пельтье

Время t, с

Температура холодной воды t x , о С

Температура горячей воды t г, о С

Разница температур Δ t, о С

Напряжение U, В

Эксперимент 3. Обратный эффект Зеебека

Время t, с

Температура холодной воды t x , о С

Температура горячей воды t г, о С

Разница температур Δ t, о С

Напряжение

Эксперимент 4. Прямой эффект Пельтье

Время t, с

Температура холодной воды t x , о С

Температура горячей воды t г, о С

Разница температур Δ t, о С

Напряжение U, В

Приложение 2. Фотография установки

Эффект Пельтье состоит в том, что при пропускании тока по цепи, в контактах разнородных проводников в дополнение к джоулеву теплу выделяется или поглощается тепло Пельтье . Количество тепла Пельтье Q п пропорционально заряду It , прошедшему через контакт

где П – коэффициент Пельтье.

Если изменить направление тока, холодный и горячий контакты поменяются местами.

Между эффектами Пельтье и Зеебека существует непосредственная связь: разность температур вызывает в цепи, состоящей из разнородных проводников, электрический ток, а ток, проходящий через такую цепь, создает разность температур контактов. Эта связь выражается уравнением Томсона

Наиболее просто и наглядно механизм эффекта Пельтье можно пояснить, используя цепь металл-n-полупроводник-металл; где контакты являются нейтральными . В этом случае работы выхода из металла и полупроводника равны, отсутствуют изгибы зон и слои обеднения или обогащения. В равновесном состоянии уровни Ферми металла и полупроводника располагаются на одной высоте, а дно зоны проводимости находится выше уровня Ферми металла, поэтому для электронов, переходящих из металла в полупроводник, существует потенциальный барьер высотой – Е фп (рис. 7.12, а ).

а ) б )

Рис. 7.12. Энергетическая диаграмма цепи металл-n-полупроводник – металл :

а – равновесные состояния; б – прохождение тока.

Приложим к цепи разность потенциалов U (рис. 7.12, б ). Эта разность потенциалов будет падать в основном в участке с большим сопротивлением, т.е. в полупроводнике, где произойдет постоянное изменение высоты уровней. В цепи возникает поток электронов, направленный справа налево.

При переходе через правый контакт необходимо увеличение энергии электрона. Эта энергия передается электронам кристаллической решеткой в результате процессов рассеяния, что приводит к уменьшению тепловых колебаний решетки в этой области, т.е. к поглощению тепла. На левом контакте происходит обратный процесс – передача электронами избытка энергии Е пф кристаллической решетке.

Необходимо отметить, что равновесные носители заряда после перехода через границу раздела оказываются неравновесными и становятся равновесными только после обмена энергией с кристаллической решеткой.

Исходя из данных рассуждений, проведем оценку коэффициента Пельтье. В проводимости металла участвуют электроны, находящиеся вблизи уровня Ферми, средняя энергия которых практически равна энергии Ферми. Средняя энергия электронов проводимости в невырожденном полупроводнике

где r – показатель степени в зависимости λ ~E r .

Таким образом, каждый электрон, проходя через контакт, приобретает или теряет энергию, равную


Поделив эту энергию на заряд электрона, получим коэффициент Пельтье

или с учетом (7.80) и (7.73)

Аналогичное соотношение можно получить для контакта металл-p-полупроводник

Здесь N C и N V – эффективные плотности состояний в зоне проводимости и валентной зоне (п. 5.3).

Для контакта металл-металл коэффициент Пельтье можно определять с помощью (7.79)

П 12 =(α 1 -α 2)T , (7.85)

или с учетом выражения для α

где Е ф 1 и Е ф 2 – уровни Ферми в металлах.

Анализ механизма возникновения эффекта показывает, что коэффициент Пельтье для контакта металл-металлимеют существенно меньшую величину, чем в случае контакта металл-полупроводник (см. пп. 7.1, 7.2).

В контакте разнородных полупроводников, напротив, коэффициент Пельтье оказывается значительно больше, что обусловлено более высоким потенциальным барьером на границе p-n-перехода. Кроме того, в такой цепи один из переходов оказывается включенным в прямом направлении, а второй в обратном. В первом случае преобладает рекомбинация электронно-дырочных пар и выделение дополнительного тепла, а во втором происходит генерация пар и соответственно поглощение такого же количества тепла.

Эффект охлаждения контакта при прохождении тока имеет существенное прикладное значение, так как позволяет создавать термоэлектрические холодильники для охлаждения радиоэлектронной аппаратуры и термостабилизаторы для опорных элементов аппаратуры. Выпускаются и различные охлаждающие стойки, используемые в биологии и медицине.

В функциональной теплоэлектронике данный эффект применяется для создания теплоимпульсов – носителей информации.

Элементы Пельтье называются специальные термоэлектрические преобразователи, работающие по принципу Пельтье. (образования разности температур при подключении электрического тока, другими словами, термоэлектрический охладитель).

Ни для кого не секрет, что электронные устройства при работе греются. Нагрев отрицательно влияет на процесс работы, поэтому, чтобы как-то охладить приборы, в корпус устройств встраивают специальные элементы, называющиеся по имени изобретателя из Франции – Пельтье. Это малогабаритный элемент, который может охлаждать радиодетали на платах устройств. При его установке собственными силами никаких проблем не возникнет, монтаж в схему производится обычным паяльником.

1 — Изолятор керамический
2 — Проводник n — типа
3 — Проводник p — типа
4 — Проводник медный

В ранние времена вопросы охлаждения никого не интересовали, поэтому это изобретение осталось без применения. Два века спустя, при использовании электронных устройств в быту и промышленности, стали применять миниатюрные элементы Пельтье, вспомнив об эффекте французского изобретателя.

Принцип действия

Чтобы понять, как работает элемент на основе изобретения Пельтье, необходимо разобраться в физических процессах. Эффект заключается в соединении двух материалов с токопроводящими свойствами, обладающими различной энергией электронов в районе проводимости. При подключении электрического тока к зоне связи, электроны получают высокую энергию, для перехода в зону с более высокой проводимости второго полупроводника. Во время поглощения энергии проводники охлаждаются. При течении тока в обратную сторону происходит обычный эффект нагревания контакта.

Вся работа осуществляется на уровне решетки атома материала. Чтобы лучше понять работу, представим газ из частиц – фононов. Температура газа имеет зависимость от параметров:
  • Свойства металла.
  • Температуры среды.

Предполагаем, что металл состоит из смеси электронного и фононного газа, находящегося в термодинамическом равновесии. Во время касания двух металлов с различной температурой, холодный электронный газ перемещается в теплый металл. Создается разность потенциалов.

На стыке контакта электроны поглощают энергию фононов и отдают ее на другой металл фононам. При смене полюсов источника тока, весь процесс будет обратного действия. Разность температур будет возрастать до того момента, пока имеются в наличии свободные электроны с большим потенциалом. При их отсутствии наступит уравновешивание температур в металлах.

Если на одну сторону пластины Пельтье установить качественный теплоотвод в виде радиатора, то вторая сторона пластины создаст более низкую температуру. Она будет ниже на несколько десятков градусов, чем окружающий воздух. Чем больше значение тока, тем сильнее будет охлаждение. При обратной полярности тока холодная и теплая сторона поменяются друг с другом.

При соединении элемента Пельтье с металлом, эффект становится незначительным, поэтому практически устанавливают два элемента. Их количество может быть любым, это зависит от потребности в мощности охлаждения.

Эффективность действия эффекта Пельтье зависит от того, насколько точно выбраны свойства металлов, силы тока, протекающей по прибору, скорости отвода тепла.

Сфера использования

Чтобы применить практически элемент Пельтье, ученые произвели несколько опытов, показавших, что повышение отвода тепла достигается увеличением числа соединений 2-х материалов. Чем больше число спаев материалов, тем выше эффект. Чаще в нашей жизни такой элемент служит для охлаждения электронных устройств, уменьшения температуры в микросхемах.

Вот их некоторые области использования:
  • Устройства ночного видения.
  • Цифровые камеры, приборы связи, микросхемы, нуждающиеся в качественном охлаждении, для лучшего эффекта картинки.
  • Телескопы с охлаждением.
  • Кондиционеры.
  • Точные часовые системы охлаждения кварцевых электрических генераторов.
  • Холодильники.
  • Кулеры для воды.
  • Автомобильные холодильники.
  • Видеокарты.

Элементы Пельтье часто используются в системах охлаждения, кондиционирования. Есть возможность достижения довольно низких температур, что открывает возможность применения для охлаждения оборудования с повышенным нагревом.

В настоящее время специалисты используют элементы Пельтье в акустических системах, выполняющих роль кулера. Элементы Пельтье не создают никаких звуков, поэтому бесшумность является одним из их достоинств. Такая технология стала популярной из-за мощной отдачи тепла. Элементы, изготовленные по современной технологии, имеют компактные размеры, радиаторы охлаждения поддерживают определенную температуру долгое время.

Достоинством элементов является длительный срок службы, потому что они сделаны в виде монолитного корпуса, неисправности маловероятны. Простая конструкция обычного широко применяемого вида простая, состоит из двух медных проводов с клеммами и проводами, изоляции из керамики.

Это небольшой перечень мест применения. Он расширяется за счет устройств бытового назначения, компьютеров, автомобилей. Можно отметить использование элементов Пельтье в охлаждении микропроцессоров с высокой производительностью. Ранее в них устанавливались только вентиляторы. Теперь, при монтаже модуля с элементами Пельтье значительно снизился шум в работе устройств.

Будут ли меняться схемы охлаждения в обычных холодильниках на схемы с использованием эффекта Пельтье? Сегодня вряд ли это возможно, так как элементы имеют низкий КПД. Стоимость их также не позволит применить их в холодильниках, так как она достаточно высока. Будущее покажет, насколько будет развиваться это направление. Сегодня проводятся эксперименты с твердотельными растворами, аналогичными по строению и свойствам. При их использовании цена модуля охлаждения может уменьшиться.

Обратный эффект элементов Пельтье

Технология подобного вида имеет особенность с интересными фактами. Это заключается в эффекте образования электрического тока путем охлаждения и нагревания пластины модуля Пельтье. Другими словами, он служит генератором электрической энергии, при обратном эффекте.

Такие генераторы электричества существуют пока чисто теоретически, но можно надеяться на будущее развитие этого направления. В свое время французский изобретатель не нашел применения своему открытию.

Сегодня этот термоэлектрический эффект широко используется в электронике. Границы применения постоянно расширяются, что подтверждается докладами и опытами исследователей и ученых. В будущем бытовая и электронная техника станет обладать совершенными инновационными возможностями. Холодильники станут бесшумными, так же, как и компьютеры. А пока модули Пельтье монтируют в разные схемы для охлаждения радиодеталей.

Преимущества и недостатки
Достоинствами элементов Пельтье можно назвать следующие факты:
  • Компактный корпус элементов, позволяет монтировать его на плату с радиодеталями.
  • Нет движущихся и трущихся частей, что повышает его срок службы.
  • Позволяет соединение множества элементов в один каскад, по схеме, позволяющей уменьшать температуру очень горячих деталей.
  • При смене полярности питающего напряжения элемент станет работать в обратном порядке, то есть, стороны охлаждения и нагрева поменяются местами.
Недостатками можно назвать такие моменты:
  • Недостаточный коэффициент действия, влияющий на увеличение подводимого тока, для достижения необходимого перепада температур.
  • Довольно сложная система отведения тепла от поверхности охлаждения.
Как изготовить элементы Пельтье для холодильника

Изготовить такие элементы Пельтье можно самому быстро и просто. Для начала нужно определиться с материалом пластин. Нужно взять пластины элементов из прочной керамики, приготовить проводники в количестве больше 20 штук, для того, чтобы обеспечить наибольший перепад температур. При достаточном числе элементов КПД произойдет значительное увеличение производительности холодильника.

Большую роль играет мощность применяемого холодильника. Если он действует на жидком фреоне, то с производительностью проблем не возникнет. Пластины элементов монтируются возле испарителя, смонтированного вместе с двигателем. Для такого монтажа понадобится некоторый набор прокладок и инструмента. Таким образом, обеспечится быстрое охлаждение нижней части холодильника.

Необходима тщательная изоляция проводников, только после этого их подключают к компрессору. После окончания монтажа нужно проверить напряжение мультиметром. При нарушении работы элементов (например, короткое замыкание), сработает терморегулятор.

Другие применения термоэлектрических модулей

Эффект модуля Пельтье применяется сегодня, благодаря законам физики. Избыточная энергия элементов всегда пригодится там, где необходима бесшумный и быстрый обмен теплом.

Основные места использования модулей:
  • Охлаждение микропроцессоров.
  • Двигатели внутреннего сгорания выпускают отработанные газы, которые ученые стали применять для образования вспомогательной энергии с помощью термоэлектрических модулей. Полученная таким способом энергия подается снова в мотор, в виде электричества. Это создает экономию топлива.
  • В бытовых устройствах, действующих на нагревание или охлаждение.

Охлаждающий кулер может превратиться в нагреватель, а холодильник может выполнять функцию теплового шкафа, если изменить полярность постоянного тока. Это называется обратимым эффектом.

Такой принцип применяют в рекуператорах. Он состоит из бокса из двух камер. Они между собой сообщаются вентилятором. Элементы Пельтье нагревают холодный воздух, поступающий снаружи, с помощью энергии, которая извлечена из теплого воздуха в помещении. Такое устройство экономит расходы на отопление помещений.

Пельтье эффект Пельтье́ эффе́кт

выделение или поглощение теплоты при прохождении тока через контакт (спай) двух разных проводников. Количество теплоты пропорционально силе тока. Используется в холодильных установках. Открыт в 1834 Ж. Пельтье.

ПЕЛЬТЬЕ ЭФФЕКТ

ПЕЛЬТЬЕ́ ЭФФЕ́КТ, для термоэлектрических явлений (см. ТЕРМОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ) , заключается в выделении или поглощении теплоты при прохождении электрического тока через контакт (спай) двух разных проводников. Эффект Пельтье является обратным эффекту Зеебека (см. ЗЕЕБЕКА ЭФФЕКТ) .
Открыт в 1834 г. Ж. Пельтье (см. ПЕЛЬТЬЕ Жан Шарль Атаназ) , который обнаружил, что при прохождении тока через спай двух разных проводников температура спая изменяется. В 1838 г. Э. Х. Ленц (см. ЛЕНЦ Эмилий Христианович) показал, что при достаточно большой силе тока можно либо заморозить, либо довести до кипения каплю воды, нанесенную на спай, изменяя направление тока.
Сущность эффекта Пельтье состоит в том, что при прохождении электрического тока через контакт двух металлов или полупроводников в области их контакта в дополнение к обычному джоулеву теплу выделяется или поглощается дополнительное количество тепла, называемого теплом Пельтье Q п. В отличие от джоулева тепла, которое пропорционально квадрату силы тока, величина Q п пропорциональна первой степени тока.
Q п = П. I . t.
t - время прохождения тока,
I - сила тока.
П - коэффициент Пельтье, коэффициент пропорциональности, зависящий от природы материалов, образующих контакт. Теоретические представления позволяют выразить коэффициент Пельтье через микроскопические характеристики электронов проводимости.
Коэффициент Пельтье П = Т Da, где Т - абсолютная температура, а Da - разность термоэлектрических коэффициентов проводников. От направления тока зависит, выделяется или поглощается тепло Пельтье.
Причина возникновения эффекта заключается в том, что в случае контакта металлов или полупроводников на границе возникает внутренняя контактная разность потенциалов. Это приводит к тому, что потенциальная энергия носителей по обе стороны контакта становится различной, так как средняя энергия носителей тока зависит от их энергетического спектра, концентрации и механизмов их рассеяния и различна в разных проводниках. Так как средняя энергия электронов, участвующих в переносе тока, в разных проводниках различается, в процессе соударений с ионами решетки носители отдают избыток кинетической энергии решетке, и тепло выделяется. Если при переходе через контакт потенциальная энергия носителей уменьшается, то увеличивается их кинетическая энергия и электроны, сталкиваясь с ионами решетки, увеличивают свою энергия до среднего значения, при этом тепло Пельтье поглощается. Таким образом, при переходе электронов через контакт электроны либо передают избыточную энергия атомам, либо пополняют ее за их счет.
При переходе электронов из полупроводника в металл энергия электронов проводимости полупроводника значительно выше уровня Ферми (см. Ферми энергия (см. ФЕРМИ-ЭНЕРГИЯ) ) металла, и электроны отдают свою избыточную энергию. Эффект Пельтье особенно велик у полупроводников, что используется для создания охлаждающих и обогревающих полупроводниковых приборов, в том числе для создания микрохолодильников в холодильных установках.


Энциклопедический словарь . 2009 .

Смотреть что такое "Пельтье эффект" в других словарях:

    Выделение или поглощение теплоты при прохождении электрич. тока I через контакт двух разл. проводников. Выделение теплоты сменяется поглощением при изменении направления тока. Открыт франц. физиком Ж. Пельтье (J. Peltier) в 1834. Кол во теплоты… … Физическая энциклопедия

    Эффект Пельтье процесс выделения или поглощения тепла при прохождении электрического тока через контакт двух разнородных проводников. Величина выделяемого тепла и его знак зависят от вида контактирующих веществ, силы тока и времени прохождения… … Википедия

    Выделение или поглощение теплоты при прохождении тока через контакт (спай) двух разных проводников. Количество теплоты пропорционально силе тока. Используется в холодильных установках. Открыт в 1834 Ж. Пельтье … Большой Энциклопедический словарь

    Выделение или поглощение тепла при прохождении электрического тока через контакт (спай) двух различных проводников. Выделение тепла сменяется поглощением при изменении направления тока. Открыт Ж. Пельтье в 1834. Количество выделенного или … Большая советская энциклопедия

    Эффект Пельтье термоэлектрическое явление, при котором происходит выделение или поглощение тепла при прохождении электрического тока в месте контакта (спая) двух разнородных проводников. Величина выделяемого тепла и его знак зависят от вида … Википедия

Выделение или поглощение (в зависимости от направления тока) тепла на контакте двух разнородных полупроводников или металла и полупроводника

Анимация

Описание

ЭффектПельтье - термоэлектрическое явление, обратное эффекту Зеебека: при пропускании электрического тока I через контакт (спай) двух различных веществ (проводников или полупроводников) на контакте, помимо джоулева тепла, происходит выделение дополнительного тепла Пельтье Q P при одном направлении тока и его поглощение при обратном направлении.

Величина выделяемого тепла Q P и его знак зависят от вида контактирующих веществ, силы тока и времени его прохождения:

dQ P = p 12 Ч I Ч dt.

Здесь p 12 = p 1 -p 2 - коэффициент Пельтье для данного контакта, связанный с абсолютными коэффициентами Пельтье p 1 и p 2 контактирующих материалов. При этом считается, что ток идет от первого образца ко второму. При выделении тепла Пельтье имеем: Q P >0,p 12 >0, p 1 > p 2 . При поглощении тепла Пельтье оно считается отрицательным и соответственно: Q P <0,p 12 <0, p 1

Вместо тепла Пельтье часто используют физическую величину, определяемую как тепловая энергия, ежесекундно выделяющаяся на контакте единичной площади. Эта величина, получившая название - мощность тепловыделения, определяется формулой:

q P = p 12 Ч j ,

где j=I/S - плотность тока;

S - площадь контакта;

размерность этой величины СИ =Вт/м2 .

Из законов термодинамики вытекает,что коэффициент Пельтье и коэффициент термоэдс a связаны соотношением:

p = aЧ Т ,

где Т - абсолютная температура контакта.

Коэффициент Пельтье, являющийся важной технической характеристикой материалов, как правило, не измеряется, а вычисляется по коэффициенту термоэдс, измерение которого более просто.

На рис. 1 и рис. 2 изображена замкнутая цепь, составленная из двух различных полупроводников ПП1 и ПП2 с контактами А и В .

Выделение тепла Пельтье (контакт А)

Рис. 1

Поглощение тепла Пельтье (контакт А)

Рис. 2

Такую цепь, принято называть термоэлементом, а ее ветви - термоэлектродами. Через цепь течет ток I , созданный внешним источником e . Рис. 1 иллюстрирует ситуацию, когда на контакте А (ток течет от ПП1 к ПП2 ) происходит выделение тепла Пельтье Q P (А)>0 , а на контакте В (ток направлен от ПП2 к ПП1 ) его поглощение - Q P (В)<0 . В результате происходит изменение температур спаев: Т А >Т В .

На рис. 2 изменение знака источника меняет направление тока на противоположное: от ПП2 к ПП1 на контакте А и от ПП1 к ПП2 на контакте В . Соответственно меняется знак тепла Пельтье и соотношение между температурами контактов: Q P (А)<0, Q P (В)>0, Т А <Т В .

Причина возникновения эффекта Пельтье на контакте полупроводников с одинаковым видом носителей тока (два полупрводника n-типа или два полупрводника p-типа) такая же, как и в случае контакта двух металлических проводников. Носители тока (электроны или дырки) по разные стороны спая имеют различную среднюю энергию, которая зависит от многих причин: энергетического спектра, концентрации, механизма рассеяния носителей заряда. Если носители, пройдя через спай, попадают в область с меньшей энергией, они передают избыток энергии кристаллической решетке, в результате чего вблизи контакта происходит выделение теплоты Пельтье (Q P >0 ) и температура контакта повышается. При этом на другом спае носители, переходя в область с большей энергией, заимствуют недостающую энергию от решетки, происходит поглощение теплоты Пельтье (Q P <0 ) и понижение температуры.

Эффект Пельтье, как и все термоэлектрические явления, выражен особенно сильно в цепях, составленных из электронных (n - тип) и дырочных (р - тип) полупроводников. В этом случае эффект Пельтье имеет другое объяснение. Рассмотрим ситуацию, когда ток в контакте идет от дырочного полупроводника к электронному (р ® n). При этом электроны и дырки движутся навстречу друг другу и, встретившись, рекомбинируют. В результате рекомбинации освобождается энергия, которая выделяется в виде тепла. Эта ситуация рассмотрена на рис. 3, где изображены энергетические зоны (e c - зона проводимости, e v - валентная зона) для примесных полупроводников с дырочной и электронной проводимостью.

Выделение тепла Пельтье на контакте полупроводников р и n - типа

Рис. 3

На рис. 4 (e c - зона проводимости, e v - валентная зона) иллюстрируется поглощение тепла Пельтье для случая, когда ток идет от n к р - полупроводнику (n ® p).

Поглощение тепла Пельтье на контакте полупроводников р и n - типа

Рис. 4

Здесь электроны в электронном и дырки в дырочном полупроводниках движутся в противоположные стороны, уходя от границы раздела. Убыль носителей тока в пограничной области восполняется за счет попарного рождения электронов и дырок. На образование таких пар требуется энергия, которая поставляется тепловыми колебаниями атомов решетки. Образующиеся электроны и дырки увлекаются в противоположные стороны электрическим полем. Поэтому пока через контакт идет ток, непрерывно происходит рождение новых пар. В результате в контактетепло будет поглощаться.

Для того, чтобы эффект Пельтье был заметен на фоне общего разогрева, связанного с выделением тепла Джоуля-Ленца, необходимо выполнение условия: Ѕ Q P Ѕі Q Дж . . В результате получаются следующие соотношения, которые необходимо учитывать при проведении экспериментов:

.

где R - сопротивление участка термоэлектрода длины l , на котором происходит выделение тепла;

r - удельное электросопротивление.

Коэффициент Пельтье, определяющий количество тепла Пельтье, выделяющегося на контакте, зависит от природы контактирующих веществ и температуры контакта: p 12 = a 12 ·Т=(a 1 - a 2 )·T , где a 1 иa 2 абсолютные коэффициенты термоэдс контактирующих веществ. Если для большинства пар металлов коэффициент термоэдс имеет порядок 10-5 ё 10-4 В/К, то для полупроводников он может оказаться гораздо больше (до 1.5Ч 10-3 В/К). Для полупроводников с разным типом проводимости a имеет разные знаки, вследствие чего Ѕa 12 Ѕ = Ѕa 1 Ѕ +Ѕa 2 Ѕ .

Необходимо отметить, что коэффициент термоэдс сложным образом зависит от состава и температуры полупроводника, при этом, по сравнению с металлами температурная зависимость a для полупроводников выражена значительно сильнее. Знак a определяется знаком носителей заряда. Не существует общих эмпирических, и тем более, теоретических формул, которые охватывали бы термоэлектрические свойства полупроводников в широком интервале температур. Обычно термоэлектродвижущая сила a полупроводника, начиная со значения a =0 при Т=0 , растет сначала пропорционально Т , затем более замедленно, часто остается постоянной в некотором интервале температур, а в области высоких температур (более 500Кё 700К) начинает убывать по закону a~ 1/Т.

Другой отличительной чертой полупроводников является определяющая роль примесей, введение которых позволяет не только во много раз изменять величину, но и менять знак a .

В полупроводниках со смешанной проводимостью вклады в термоэдс дырок и электронов противоположны, что приводит к малой величине a и p .

В частном случае, когда концентрации (n) и подвижности (u) электронов и дырок равны (ne = np и ue = up ) величины a и p обращаются в ноль:

a~ (ne ue - np up ) / (ne ue + np up ).

Эффект Пельтье, как и другие термоэлектрические явления имеет феноменологический характер.

Эффект Пельтье в полупроводниках используется для термоэлектрического охлаждения и подогрева, что находит практическое применение при термостатировании и в холодильных устройствах.

Явление Пельтье было открыто Ж. Пельтье (J. Peltier) в 1834 г.

Временные характеристики

Время инициации (log to от -3 до 2);

Время существования (log tc от 15 до 15);

Время деградации (log td от -3 до 2);

Время оптимального проявления (log tk от -2 до 3).

Диаграмма:

Технические реализации эффекта

Техническая реализация Пельтье эффекта в полупроводниках

Основным технологическим узлом всех термоэлектрических охлаждающих устройств является термоэлектрическая батарея, набранная из последовательно соединенных термоэлементов. Так как металлические проводники обладают слабыми термоэлектрическими свойствами, термоэлементы делаются из полупроводнков, причем одна из ветвей термоэлемента должна состоять из чисто дырочного (р -тип), а другая из чисто электронного (n -тип) полупроводника. Если выбрать такое направление тока (рис. 5), при котором на контактах, расположенных внутри холодильника тепло Пельтье будет поглощаться, а на наружных контактах выделяться в окружающее пространство, то температура внутри холодильника будет понижаться, а пространство вне холодильника нагреваться (что происходит при любой конструкции холодильника).

Принципиальная схема термоэлектрического холодильника

Рис. 5

Главная характеристика термоэлектрического охлаждающего устройства - это эффективность охлаждения:

Z= a 2 /(rl ) ,

где a - коэффициент термоэдс;

r - удельное сопротивление;

l - удельная теплопроводность полупроводника.

Параметр Z - функция температуры и концентрации носителей заряда, причем для каждой заданной температуры существует оптимальное значение концентрации, при которой величина Z максимальна. Максимальное снижение температуры связано с величиной эффективности выражением:

D Т max = (1/2) Ч Z Ч T 2 ,

где Т - температура холодного спая термоэлемента.

Чем больше значение Z для отдельных ветвей, тем больше и то значение Z = (a 1 + a 2 ) 2 /(Цr 1 l 1 +Цr 2 l 2 ) 2 , которое определяет к.п.д. всего термоэлемента. Целесообразно выбирать полупроводники с наибольшими значениями подвижности и с минимальной теплопроводностью. Введение в полупроводник тех или иных примесей - основное доступное средство изменять его показатели (a , r , l ) в желательную сторону.

Современные термоэлектрические охлаждающие устройства обеспечивают снижение температуры от +20о С до 200о С; их холодопроизводительность, как правило, не более 100 Вт.

Технологически стержни из полупроводниковых материалов с р - и n -проводимостью (1) монтируются на теплопроводящие платы из изоляционного материала (2) с помощью металлических соединителей (3) как показано на рис. 6.

Схема термоэлектрического модуля

Рис. 6

Применение эффекта

Основные направления практического использования эффекта Пельтье в полупроводниках: получение холода для создания термоэлектрических охлаждающих устройств, подогрев для целей отопления, термостатирование, управление процессом кристаллизации в условиях постоянной температуры.

Термоэлектрический метод охлаждения обладает рядом преимуществ по сравнению с другими методами охлаждения. Термоэлектрические устройства отличаются простотой управления, возможностью тонкого регулирования температуры, бесшумностью, высокой надежностью работы. Основной недостаток термоэлектрических устройств- малая величина эффективности, что не позволяет их использовать для промышленного получения «холода».

Термоэлектрические охлаждающие устройства применяются в бытовых и транспортных холодильниках, термостатах, для охлаждения и термостатирования термочувствительных элементов радиоэлектронной и оптической аппаратуры, для управления процессом кристаллизации, в медико-биологических приборах и т.д.

В компьютерной технике термоэлектрические охлаждающие устройства имеют жаргонное название ”кулеры” (от английского cooler - охладитель).

Литература

1. Физическая энциклопедия.- М.: Большая Российская энциклопедия, 1998.- Т.5.- С.98-99, 125.

2. Сивухин С.Д. Общий курс физики.- М.: Наука, 1977.- Т.3. Электричество.- С.490-494.

3. Стильбанс Л.С. Физика полупроводников.- М., 1967.- С.75-83, 292-311.

4. Иоффе А.Ф. Полупрводниковые термоэлементы.- М., 1960.

Ключевые слова