Все о стройке и ремонте

Система калибровки измерительных каналов асу тп. Система калибровки измерительных каналов автоматизированных систем управления технологическими процессами

Есть измерительная система в составе АСУ ТП. В ее состав входят первичные преобразователи с токовым выходом 4-20 мА, контроллер с модулями, измеряющими токовые сигналы, сервер и АРМ со SCADA системой. отдельно все СИ в составе системы поверяются. Какие операции поверки необходимо выполнять при поверке системы? Есть несколько вариантов, для примера выкладываю свою таблицу из методики поверки. У кого какие еще варианты этой таблицы и обоснование почему так.

1. К сожалению, файл "Операции поверки" имеет малое отношение к АСУ ТП, т.к., видимо по ошибке, в нем есть графа "после замены на однотипные ТТ или ТН...", которые редко входят в состав АСУ ТП.

2. Также к сожалению, операции поверки в таблице перечислены не совсем так, как хотелось бы, ибо проверка целостности (чего?) и идентификация ПО, по моему мнению, не относятся к внешнему осмотру. Сюда с небольшой натяжкой можно включить проверку подключения.

Начну с того, что АСУ ТП - техническая система с измерительными функциями. Эти функции могут быть реализованы ИС, которую в соответствии с ГОСТ Р 8.596 необходимо выделить в АСУ ТП. При этом предполагаю, что комплектная поверка хотя и предпочтительна, но невозможна.

Какие бы операции поверки ИС выбрал я? Для измерительных каналов ИС, применяемых в сфере ГРОЕИ, можно было бы выбрать следующие операции поверки:

1. Проверка документов, подтверждающих поверку компонентов ИС, являющихся СИ.

2. Внешний осмотр

5. Проверка идентификации ПО

Этот вариант имеет смысл применять в том случае, когда на выходе датчиков код.

Второй вариант - когда выходной величиной датчиков является сила тока или, скажем, частота. В этом случае операции поверки могут быть следующие:

1. Проверка документов, подтверждающих поверку первичных измерительных преобразователей.

2. Внешний осмотр.

3. Проверка условий эксплуатации (в случае периодической поверки) - возможно, но не обязательно.

4. Опробование (при периодической поверке может не иметь смысла)

5. Проверка идентификации ПО

6. Проверка поправки часов относительно координированной шкалы времени UTC - если есть такая нормируемая МХ

7. Проверка ИВК вместе с линиями связи - в этом случае датчики отключаются, выводы лини связи в месте подключения датчиков замыкаются, калибратор включается в разрыв токовой цепи два раза (сначала между одним выводом ИВК и линией связи, затем между другим выводом ИВК и другим выводом лини связи) - за результат имеет смысл взять полусумму полученных результатов - для уменьшения влияния помех в линии.

Возможны и другие варианты.

Если же речь идёт не о поверке, а о калибровке, то все гораздо сложнее...

Материал посвящен важному аспекту метрологического обеспечения готовых систем автоматизации - калибровке измерительных каналов (ИК) АСУ ТП, а именно: проблеме повышения эффективности калибровочных работ и снижению их трудоемкости за счет более эффективного метода калибровки.

ЗАО "Модульные Системы Торнадо", г. Новосибирск



Создаваемые сегодня современные автоматизированные системы управления технологическими процессами (АСУ ТП) крупных объектов теплоэнергетики характеризуются высокой сложностью и степенью ответственности. Программно- технические комплексы (ПТК), составляющие основу АСУ ТП, должны не только обеспечивать реализацию всех необходимых сегодня функций контроля, измерения и регулирования технологических параметров, но быть удобными и технологичными в эксплуатации и сопровождении. Одним из важных видов сопровождения готовых автоматизированных систем является метрологическое сопровождение.

Не секрет, что метрологические вопросы являются самыми “больными” и “нелюбимыми” как для многих поставщиков ПТК, так и для эксплуатационных служб. Нередко вопросы метрологии вообще игнорируются, особенно в связи с внедрением микропроцессорных систем управления. Правда, такой способ решения требует определенной лояльности со стороны органов стандартизации и метрологии. В противном случае, проблемы в решении метрологических задач могут обернуться серьезными проблемами и значительными производственными и экономическими потерями.

Используя опыт внедрения АСУ ТП и их сопровождения, компания “Модульные Системы Торнадо” разработала комплексный подход к созданию современных систем на генерирующих объектах энергетики. Совместно с ведущими проектными и технологическими организациями компания осуществляет все необходимые исследовательские и инжиниринговые работы. Особое внимание уделяется метрологическому обеспечению поставляемых автоматизированных систем управления.

Необходимые метрологические работы выполняются на каждом этапе жизненного цикла АСУ ТП. На этапе технического задания формируются требования к метрологическому обеспечению разрабатываемой системы, на стадии технического проекта разрабатываются перечни измерительных каналов (ИК), определяются требования к точности выполнения измерений, выбираются средства измерений для формирования ИК, обеспечивающие требуемую точность, и также подбираются рабочие эталоны, с помощью которых можно подтвердить заданную точность измерения. На этапе подготовки рабочей документации выполняется согласование с Заказчиком применения утвержденных Госстандартом РФ методик поверки (калибровки) измерительных каналов.

На стадии ввода АСУ ТП в действие осуществляется комплекс метрологических работ в соответствии с нормативными документами.

На этапе пусконаладочных работ осуществляется монтаж и наладка измерительных каналов системы, на этапе предварительных испытаний наладочная организация совместно с персоналом эксплуатирующей организации выполняет приемку ИК из наладки в опытную эксплуатацию с целью проверки соответствия ИК и готовности к вводу в эксплуатацию. Все измерительные каналы системы подвергаются первичной поверке или калибровке.

На этапе приемочных испытаний могут быть проведены испытания с целью “сертификации соответствия” ИК, либо испытания с целью утверждения типа. И, наконец, в промышленной эксплуатации осуществляется периодическая поверка или калибровка измерительных каналов АСУ ТП.

Программно-технические комплексы “Торнадо”, являющиеся основой для создаваемых АСУ ТП, разработаны в соответствии с нормативными документами РФ и относятся к изделиям Государственной системы приборов. ПТК “Торнадо” занесены в Государственный реестр и имеют сертификат об утверждении типа средств измерений.

Разработанные метрологической службой компании методики поверки (калибровки) измерительных каналов АСУ ТП и измерительных модулей, входящих в состав программно-технического комплекса, согласованы Всероссийским НИИ метрологии и стандартизации (ВНИИМС).

Помимо необходимых документов и аппаратного обеспечения, компания предлагает Заказчикам специализированное ПО “АРМ метролога” (собственная разработка компании), которое является составной частью ПО ПТК “Торнадо” и позволяет осуществлять калибровку измерительных каналов АСУ ТП в автоматизированном режиме.

Разработанные методики калибровки измерительных каналов АСУ ТП поставляются в комплекте со специализированным программным и аппаратным обеспечением. На наш взгляд, этот способ является одним из наиболее оптимальных для решения метрологических вопросов при внедрении АСУ ТП. Однако уже сегодня специалисты компании работают над проблемой сокращения трудозатрат на калибровку ИК, поставляемых заказчику АСУ ТП. По существующему в настоящее время методу в процессе калибровки каналов АСУ ТП на объекте участвуют как минимум два человека. Один из них находится на стационарном рабочем месте инженера АСУ ТП или метролога и работает с программой “АРМ метролога”. Второй должен находиться у соединительных коробок, чтобы с помощью генератора эталонных сигналов подавать эталонный сигнал в месте подключения первичного преобразователя (датчика). Оба калибровщика должны быть снабжены рациями, чтобы согласовывать свои действия. После того, как введены исходные данные о канале, задано количество сечений диапазона измерения, в которых будет осуществляться сбор измеренных значений, программа определяет значение эталонного сигнала и подсказывает, в какой момент этот сигнал можно подавать на вход ИК. Эту информацию калибровщик, работающий за компьютером, должен передать коллеге, который находится на объекте (рис. 1).


Рис. 1. Один из существующих методов калибровки ИК АСУ ТП

Таким образом, существующая методика реализует традиционный (с использованием средств ВТ и специализированного ПО) метод калибровки (поверки), который имеет ряд недостатков:

Большие временные затраты (на калибровку каждого канала необходимо 10-15 минут без учета времени, затрачиваемого на подключение задатчика эталонного сигнала);

Необходимость участия в процессе калибровки двух человек;

Возможность ошибочной информации;

Ручное управление задатчиком;

Передача информации ведется по рации.

Недостаток пользовательского интерфейса стационарного АРМ метролога - потребность в ручном внесении настроек процесса, при поверке каждого канала (класса точности канала, сечений диапазона измерений, единиц измерения и др.).

Принципиальным недостатком существующей методики калибровки ИК является то, что калибровщик, работающий на объекте, постоянно занят в процессе калибровки и не может отвлечься на работу по подготовке следующего канала в момент калибровки текущего канала. То есть, по существующей методике калибровщик работает строго последовательно - подготовка канала для калибровки (5-10 мин), калибровка (10-15 мин), восстановление канала (5-10 мин). Итого, весь процесс занимает в среднем 30 минут на один канал. Таким образом, за одну смену можно провести калибровку 10-15 каналов. Если учесть, что все эти работы проводятся дневным персоналом, а объем ИК, подлежащих калибровке на энергоблоке 200 МВт, составляет порядка 2000, то на калибровку всех ИК потребуется от 6 до 9 месяцев! Это, конечно, если все честно делать.

Поэтому если есть лазейки, и есть возможность не делать, то в подавляющем большинстве случаев метрологией, как таковой, никто и не занимается - ни поставщик АСУ ТП, ни эксплуатационные службы.

Как уже было сказано, ПТК “Торнадо” имеет в своем составе комплексное решение метрологических задач, но, к сожалению, трудоемкость этих работ остается высокой. И специалисты компании на собственном опыте поняли, что необходимо в корне изменить ситуацию и снизить трудоемкость калибровочных работ.

Для создания более эффективного метода калибровки, не имеющего недостатков предшествующей системы и способного значительно повысить эффективность работы специалиста-калибровщика за счет большей автоматизации процесса сбора измерительной информации и обработки результатов, специалистам компании необходимо было провести ряд теоретических и исследовательских работ:

Разработка нового метода калибровки;

Анализ необходимого аппаратного обеспечения и выбор оборудования;

Разработка оптимальной архитектуры новой системы калибровки;

Просчет и создание тестовой модели мобильного АРМ метролога;

Разработка операторского интерфейса для мобильного и стационарного АРМ;

Разработка новых протоколов связи.

После проведения работ специалисты компании пришли к идее применения беспроводных технологий связи для организации проведения калибровочных работ.

Разработка нового метода калибровки

Разработанный метод предполагает последовательное выполнение следующих операций:

Отключение датчика и подключение генератора эталонных сигналов к входу измерительного канала;

Выбор канала по его коду или наименованию на мобильном АРМ метролога. При этом, с мобильного АРМ посылается запрос на стационарный АРМ, на котором из базы данных или из перечня ИК выбирается вся необходимая информация об этом канале: диапазон измерения, класс точности канала, сведения о датчике, измерительном модуле и другая информация, необходимая для организации процесса калибровки и для внесения в сертификат;

Запуск автоматической процедуры сбора измеренных значений и статистической обработки выборки;

Мониторинг процесса калибровки, просмотр результатов.

В ходе автоматического выполнения процесса калибровки у калибровщика есть возможность следить на мобильном АРМ за текущим измеренным значением, за отклонением этого значения от эталонного, за переключением генерируемых значений. Также имеется возможность просмотреть протокол калибровки и сертификат на канал.

Выбор оборудования

Специалистами компании были изучены специфические особенности процесса калибровки ИК на крупных промышленных объектах и сформулированы основополагающие критерии для определения состава технических средств новой системы:

Дальность связи и скоростные характеристики. При выборе средств беспроводной связи важным критерием являются дальность связи и скоростные характеристики. Данный критерий напрямую связан с конструктивными особенностями промышленного объекта, а именно: геометрией помещений, наличием металлических конструкций, наличием помех.

Натурные испытания новой системы проводились на Новосибирской ТЭЦ-5;

Совместимость физических интерфейсов. Следует учесть, что все устройства должны быть совместимы друг с другом на уровне физических интерфейсов, а также быть поддерживаемыми на уровне операционных систем (ОС);

Вес и размеры используемых компонентов. Все устройства, входящие в мобильный АРМ, должны отвечать требованиям мобильности и удобства эксплуатации. То есть иметь минимальный вес и размеры для беспрепятственного перемещения специалиста-калибровщика по объекту вместе с мобильным АРМ;

Оптимальность электропитания. Низкое энергопотребление, мобильность, возможность использования общего автономного источника питания;

Экономичность внедрения. Требование касается приемлемой стоимости и целесообразности внедрения на объекте, при соблюдении всех вышеописанных критериев.

Разработка архитектуры системы


Рис. 2. Общая структура системы калибровки ИК АСУ ТП

Структура распределенной системы калибровки измерительных каналов была определена с учетом специфики проведения калибровки измерительных каналов на крупных промышленных объектах. В основу системы положена идея применения беспроводных технологий связи, мобильного компьютера и управляемого от него генератора эталонного сигнала. К компьютеру стационарного АРМ подключается радиомодем (рис. 2), в программу стационарного АРМ вносятся необходимые изменения для работы ее в режиме удаленного управления мобильным АРМ.

В состав мобильного АРМ метролога входят:

1_карманный персональный компьютер (КПК), который выполняет две функции:

Удаленный интерфейс к стационарному АРМ метролога;

Передача заданий, полученных от стационарного АРМ метролога программируемому задатчику.

2_Программируемый задатчик, с помощью которого формируется калибровочный сигнал на входе канала.

3_Блок для обеспечения беспроводной связи КПК со стационарным АРМ.

4_Средства, обеспечивающие питание радиомодема и генератора аналоговых сигналов.

Создание тестовой модели мобильного АРМ метролога

После проведенных испытаний и анализа сравнительных характеристик ряда промышленных ноутбуков и карманных персональных компьютеров в качестве компьютера тестовой модели АРМ решено было использовать КПК.

В качестве блока для обеспечения беспроводной связи КПК со стационарным АРМ в испытательной модели мобильного АРМ метролога был использован радиомодем с питанием модема от аккумуляторной батареи 12 В.

В отличие от устройств WI-FI, работающими на частотах 2400 - 2483.5 МГц, радиомодем работает на частоте 433.92 МГц и оптимально подходит для промышленных объектов, таких как ТЭЦ.


Рис. Подключение задатчика к КПК

Радиоволны частоты 433 МГц лучше огибают металлические конструкции типичных (для промышленного предприятия) размеров. В условиях цеха металлические конструкции частично огибаются радиоволнами, частично волна попадает за препятствия за счет отражений.

Пространственное затухание радиоволн на низких частотах меньше. Используемый радиомодем специально приспособлен для работы в условиях импульсных помех, так как в нем использовано каскадное кодирование с перемежением, эффективно исправляющее ошибки при передаче данных.

В качестве программируемого задатчика, с помощью которого формируется эталонный сигнал на входе канала, был использован программируемый калибратор-измеритель унифицируемых сигналов ИКСУ 2000. Достоинством данного задатчика является его высокий класс точности, что позволяет использовать его не только для калибровки ИК, но и измерительных модулей ПТК, класс точности которых существенно выше.

Задатчик обладает малым весом и габаритами. Предусмотрена возможность программирования калибратора через интерфейс RS232. Работа калибратора может осуществляться при питании от аккумулятора на 12В, это делает возможным использование одного источника для питания калибратора и радиомодема.

Калибратор ИКСУ 2000 подключается к КПК через кабель.

Использование устройства ИК-RS232 (инфракрасный порт - RS232), как одного из составляющих мобильного АРМ, было определено исходя из потребности в управлении двумя устройствами с КПК. Это дало возможность использования его как прозрачный канал связи ИК-RS232 и питания от подключаемого устройства через интерфейс RS232.

Радиомодем соединяется с КПК через ИКпорт-RS232.

Таким образом, все компоненты мобильного АРМ свободно размещаются в объеме 350x250x100 мм и имеют общий вес не более 2,5 кг.

Результаты проведенных работ

В результате проведенных работ была создана тестовая модель работающей системы (включающей мобильный АРМ и программу стационарного АРМ) для калибровки измерительных каналов различных типов. В ПО стационарного АРМ были внесены все необходимые изменения для работы в режиме удаленного управления.

Ряд испытаний, проведенных на ТЭЦ-5 ОАО “Новосибирскэнерго”, показали, что:

В процессе калибровки при использовании новой распределенной системы калибровки измерительных каналов достаточно участие только одного человека, оснащенного мобильным АРМ метролога. Все управление задатчиком полностью ложится на программу стационарного АРМ, что исключает погрешности, связанные с установкой прибора. Инструкции поступают через беспроводную связь в программу, установленную на мобильном АРМ, которая и управляет калибратором. Управление всем процессом ведется с мобильного АРМ также через беспроводное соединение;

В функции калибровщика - координатора мобильного АРМ входят: запуск процесса и выбор кода канала (необходимая инициализация производится на стационарном АРМ); визуальное наблюдение за ходом процесса посредством интерфейса ПО мобильного АРМ, который отображает текущий этап калибровки, значения текущих погрешностей измерений, выставляемые значения на задатчике. Калибровщик имеет возможность в любой момент остановить процесс калибровки или начать процедуру с самого начала;

РОССИЙСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ЭНЕРГЕТИКИ
И ЭЛЕКТРИФИКАЦИИ «ЕЭС РОССИИ»

ДЕПАРТАМЕНТ СТРАТЕГИИ РАЗВИТИЯ И НАУЧНО-ТЕХНИЧЕСКОЙ ПОЛИТИКИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ.
ИЗМЕРИТЕЛЬНЫЕ КАНАЛЫ
ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНЫХ
СИСТЕМ.

ОРГАНИЗАЦИЯ И ПОРЯДОК
ПРОВЕДЕНИЯ КАЛИБРОВКИ

РД 153-34.0-11.205-98

СЛУЖБА ПЕРЕДОВОГО ОПЫТА ОРГРЭС

Вводится в действие

с 01.11.2000 г.

Настоящие Методические указания распространяются на измерительные каналы информационно-измерительных систем - ИК ИИС (далее - ИК), устанавливают требования к методам и средствам калибровки; определяют организацию, порядок проведения и оформления результатов калибровки; регламентируют алгоритмы определения метрологических характеристик (MX) ИК при проведении калибровки и предназначены для метрологических служб энергопредприятий, аккредитованных на право проведения работ по калибровке ИК ИИС.

Методические указания разработаны в соответствии с Законом РФ «Об обеспечении единства измерений » , ГОСТ 8.438.81 , ПР 50.2.016-94 и РД 50-660-88 .

В соответствии с настоящими Методическими указаниями должны разрабатываться методические указания по калибровке ИК для конкретных типов ИИС.

С выходом настоящих Методических указаний утрачивает силу «Методика. Измерительные каналы информационно-измерительных систем. Организация и порядок проведения поверки: РД 34.11.205-88» (М.: СПО Союзтехэнерго, 1988).

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Цель калибровки - определение и подтверждение действительных значений MX и (или) пригодности к применению ИК, не подлежащих государственному метрологическому контролю и надзору.

1.2. Калибровка ИК должна проводиться комплектно (комплектный метод ).

Если калибровку невозможно провести комплектным методом, то ее проводят поэлементно (поэлементный метод).

Под элементами ИК ИИС понимаются отдельные средства измерений (СИ) или совокупности СИ и других технических средств, включая линии связи, используемых в ИК ИИС.

При проведении калибровки поэлементным методом отдельно калибруются первичный измерительный преобразователь (ПИП) (или ПИП и ИП) и электрический тракт ИК (ЭТ ИК). Калибровка ЭТ ИК проводится в соответствии с методикой, изложенной в настоящих Методических указаниях.

1.3. Калибровке подвергаются все ИК с интервалами, указанными в свидетельстве о метрологической аттестации (МА).

1.4. Перечень ИК, подлежащих калибровке, составляется метрологической службой энергопредприятия и утверждается главным инженером.

1.5. Измерительные каналы ИИС, подлежащие государственному метрологическому контролю и надзору, в соответствии со ст. 13 Закона РФ «Об обеспечении единства измерений » должны подвергаться периодической поверке.

Перечень ИК, подлежащих поверке, составляется метрологической службой энергопредприятия и направляется в территориальный орган Госстандарта России.

Поверка ИК производится по методике, утвержденной органом Государственной метрологической службы, или по методике, изложенной в настоящих Методических указаниях и согласованной с территориальным органом Госстандарта России.

Межповерочные интервалы устанавливаются территориальным органом Государственной метрологической службы. Корректировка межповерочных интервалов проводится органом Государственной метрологической службы по согласованию с метрологической службой энергопредприятия.

2. ОПЕРАЦИИ КАЛИБРОВКИ

При проведении калибровки должны быть выполнены следующие операции:

проверка наличия технической документации на ИИС и агрегатные средства измерений (АСИ), входящие в ИК (приложение 1);

внешний осмотр (разд. 7.1 настоящих Методических указаний);

проверка функционирования ИК (разд. 7.2);

определение метрологических характеристик (разд. 7.3);

обработка результатов экспериментальных исследований (разд. 7.4);

оформление результатов калибровки (разд. 8 настоящих Методических указаний).

3. СРЕДСТВА КАЛИБРОВКИ

3.1. Средства калибровки (эталоны) должны обеспечивать воспроизведение и (или) хранение единиц физической величины с наивысшей точностью с целью передачи ее значения ИК от соответствующих государственных эталонов, а также иметь действующее калибровочное (поверочное) клеймо или сертификат о калибровке (поверке).

3.2. При проведении калибровки комплектным методом в качестве эталонов должны применяться СИ, указанные в нормативно-технической документации (НТД) по поверке или калибровке ПИП.

3.3. При поэлементной калибровке контролю подлежат MX элементов ИК, поэтому в качестве эталонов должны применяться СИ в соответствии с НТД по поверке или калибровке первого СИ в составе ЭТ ИК.

3.4. Допускается использование встроенных эталонов и источников сигналов, входящих в состав ИИС, а также замена используемых эталонов на другие, если их технические и метрологические характеристики не хуже характеристик эталонов по пп. 3.2 и 3.3.

3.5. Контроль за внешними условиями должен осуществляться СИ, абсолютное значение погрешности которых составляет не более чем 0,1 изменения значения внешней влияющей величины, при котором возникают дополнительные погрешности у АСИ, входящих в состав ИК.

3.6. В приложении 2 приведен перечень эталонов и вспомогательных СИ, которые могут быть использованы при проведении калибровки.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1. При проведении калибровки ИК необходимо соблюдать меры безопасности, предусмотренные ГОСТ 12.2.007.0-75 , ГОСТ 12.2.007.6-75 , ГОСТ 12.2.007.14-75 , Правилами техники безопасности и , правилами ТБ и промсанитарии, устанавливаемыми инструкциями энергопредприятий, НТД на эталоны и АСИ.

4.2. К проведению калибровки допускаются лица, имеющие профессиональную подготовку и право проведения калибровочных работ.

5. ТРЕБОВАНИЯ К УСЛОВИЯМ КАЛИБРОВКИ

5.1. При проведении калибровки проводится контроль внешних условий, значения параметров которых должны соответствовать условиям, при которых были нормированы MX ИК.

5.2. Если условия эксплуатации СИ не соответствуют требованиям НТД, то калибровка не проводится до установления и устранения причин, вызвавших отклонение условий эксплуатации от требуемых.

5.3. Условия применения эталонов, используемых при калибровке, должны соответствовать требованиям НТД на них и быть такими, чтобы суммарная дополнительная погрешность, возникающая от воздействия внешних влияющих величин, не превышала 0,5 основной погрешности эталона.

6. ПОДГОТОВКА К КАЛИБРОВКЕ

6.1. Перед проведением калибровки необходимо:

осуществить организационные мероприятия по оформлению допуска к работе;

подготовить и проверить комплект технической документации на ИИС и АСИ, входящих в состав ИК, согласно перечню, приведенному в приложении 1;

провести инструктаж персонала, участвующего в калибровке;

подготовить градуировочные таблицы для термоэлектрических преобразователей и термопреобразователей сопротивления, таблицы расчетных значений перепадов давления для ИК расхода и уровня (пример таблицы приведен в приложении 3);

подготовить и установить эталоны и вспомогательные СИ для задания входного сигнала и контроля влияющих величин;

установить связь (по радио или телефонную) от средств задания входного сигнала до средств представления информации.

7. ПРОВЕДЕНИЕ КАЛИБРОВКИ

7.1. Внешний осмотр

7.1.1. При проведении внешнего осмотра ИК необходимо проверить:

комплектность ИК;

исправность пломб АСИ;

правильность и качество выполнения экранировки, монтажа линий связи;

отсутствие механических повреждений и дефектов АСИ, входящих в состав ИК, которые могут повлиять на их работоспособность;

выполнение заземления АСИ, входящих в состав ИК, в соответствии с требованиями инструкций по эксплуатации или технических описаний на конкретные АСИ;

наличие маркировки линий связи.

7.1.2. При несоответствии ИК вышеуказанным требованиям калибровка не проводится до устранения выявленных недостатков.

7.2. Проверка функционирования ИК (опробование)

Функционирование ИК в условиях эксплуатации проверяется путем вывода значений измеряемой величины технологического параметра на средства представления информации. Если значение измеряемого параметра соответствует режиму работы оборудования, то считается, что ИК функционирует нормально.

7.3. Определение метрологических характеристик

7.3.1. Определение количества исследуемых точек по диапазону измерений ИК

Исследуемые точки устанавливаются в соответствии с программой МА ИК ИИС в количестве не менее 5.

Исследуемые точки равномерно располагаются по всему диапазону измерений ИК, причем одна точка должна соответствовать 0 %, а другая - 100 % диапазона.

Если невозможно исследовать точки 0 % и 100 %, то они заменяются точками, в которых действительные значения измеряемого параметра определяются по формулам:

где X и0 и Х и100 - действительные значения измеряемого параметра в исследуемых точках, находящихся вблизи нижнего и верхнего пределов диапазона измерений ИК;

Х 0 и Х 100 - нижний и верхний пределы диапазона измерений ИК;

l и ∆ h - нижняя и верхняя границы доверительного интервала погрешности измерений ИК, указанные в свидетельстве о МА ИК ИИС.

7.3.2. Проведение экспериментальных исследований

7.3.2.1. При комплектном методе экспериментальные работы состоят в определении значений выходного сигнала ИК в каждой исследуемой точке диапазона измерений ИК и контроле условий эксплуатации ИК.

Схема проведения эксперимента представлена в приложении 4 (рис. П4.1).

7.3.2.2. При поэлементном методе экспериментальные работы состоят в определении:

максимальных значений абсолютной погрешности ПИП (или ПИП и ИП) в исследуемых точках по протоколу калибровки, при этом должно выполняться условие:

∆ ПИП макс ≤ ∆ ПИП д;

∆ ИП макс ≤ ∆ ИП д,

где ∆ ПИП д - предельно допустимое значение погрешности ПИП, указанное в НТД;

∆ ИП д - предельно допустимое значение погрешности ИП, указанное в НТД

значений выходного сигнала ЭТ ИК в исследуемых точках и контроле условий его эксплуатации, а также значений внешних влияющих величин для ПИП (или ПИП и ИП). Структурная схема проведения эксперимента представлена на рис. П4.2.

7.3.2.3. В каждой исследуемой точке проводятся три наблюдения.

7.3.2.4. Регистрация результатов наблюдений осуществляется через интервалы времени, равные циклу опроса ПИП или превышающие его.

7.3.2.5. Результаты экспериментальных исследований заносятся в табл. 1 и 2 протокола (приложения 5 и 6).

7.3.2.6. Подключение эталонов производится в соответствии с НТД на АСИ.

7.3.2.7. После проведения экспериментальных работ восстанавливается рабочая схема ИК и проводится проверка его функционирования (см. разд. 7.2).

7.4. Обработка результатов экспериментальных исследований

7.4.1. Обработка результатов экспериментальных исследований состоит в определении погрешности ИК.

7.4.2. Обработка результатов экспериментальных исследований проводится по алгоритму.

7.4.2.1. Погрешность ИК для каждого i -го наблюдения в j -й исследуемой точке определяется:

при комплектном методе по формуле

где ∆ j (3) - среднее значение погрешности ИК по трем наблюдениям;

j (2)+ и ∆ j (2)- - среднее значение погрешности ИК по двум наибольшим и двум наименьшим значениям;

ji мин и ∆ ji макс - соответственно минимальное и максимальное значение погрешности в j -й исследуемой точке.

7.4.3. Заключение о пригодности ИК,

7.4.3.1. Заключение производится по алгоритму, приведенному на рис. 1.

7.4.3.2. Измерительный канал считается пригодным к применению по результатам калибровки, если:

условия эксплуатации ИК соответствуют условиям, указанным в свидетельстве о МА;

во всех точках диапазона измерений ИК значения погрешностей, рассчитанные по одной из формул (3), (4) или (5), удовлетворяют неравенству

Рис. 1. Блок-схема алгоритма определения пригодности ИК к применению

и одного из неравенств:

l < ∆ (2)+ < ∆ h ;

l < ∆ (2) - < ∆ h .

8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ КАЛИБРОВКИ

По результатам калибровки оформляется сертификат о калибровке ИК ИИС по форме, приведенной в приложении 7.

По результатам поверки оформляется свидетельство о поверке ИК ИИС по форме, приведенной в приложении 8.

Приложение 1

Обязательное

ПЕРЕЧЕНЬ ТЕХНИЧЕСКОЙ ДОКУМЕНТАЦИИ, ПРЕДЪЯВЛЯЕМОЙ ПРИ КАЛИБРОВКЕ ИК

1. Техническое описание ИИС.

2. Инструкция по эксплуатации ИИС.

3. Методические указания по калибровке ИК ИИС.

4. Методики калибровки или поверки.

5. Сертификат и протокол последней калибровки ИК.

6. Свидетельство о МА ИК ИИС.

7. Перечень и значения MX элементов ИИС, техническое описание на АСИ, журнал о калибровке АСИ.

8. Программа МА ИК ИИС.

Приложение 2

ЭТАЛОНЫ И ВСПОМОГАТЕЛЬНЫЕ СИ, ИСПОЛЬЗУЕМЫЕ ПРИ ПРОВЕДЕНИИ КАЛИБРОВКИ

Наименование

Диапазон измерений

Основная погрешность, %

Назначение

1. Масляный пресс

Верхний предел измерений 6 кгс/см 2 (0,6 МПа)

Задание входного сигнала при комплектном методе калибровки ИК давления

2. Манометр образцовый

Контроль входного сигнала при комплектном методе калибровки ИК давления

3. Манометр деформационный образцовый

Верхний предел измерений 1 кгс/см 2 (0,1 МПа)

4. Задатчик давления

Воздух 250

Верхний предел измерений 250 кгс/см 2 (25 МПа)

Задание входного сигнала при комплектном методе калибровки ИК давления, разности давлений

5. Мановакуумметр

Верхний предел измерений 2,5 кгс/см 2 (0,25 МПа)

Задание входного сигнала при комплектном методе калибровки ИК вакуума

6. Магазин сопротивления

(0,01 ÷ 111111,1) Ом

Задание входного сигнала при поэлементном методе калибровки ИК температуры

7. Потенциометр постоянного тока

8. Магазин взаимной индуктивности

(5·10 -4 ÷ 11,111) мГн

Задание входного сигнала при поэлементном методе калибровки ИК давления, расхода, уровня

9. Источник электрических сигналов

10. Цифровой вольтамперметр

Контроль значения входного сигнала при поэлементном методе калибровки ИК давления, расхода, уровня

11. Термометр лабораторный

Цена деления 1 °С

Измерение температуры окружающего воздуха

12. Барометр

(80 ÷ 106)·1000 Па

Измерение барометрического давления

13. Психрометр Августа

Цена деления 0,5 °С

Измерение влажности окружающего воздуха

14. Ампервольтметр

Измерение напряжения питания

15. Частотомер

(10 ÷ 1000) Гц

±(1,5·10 -7 Гц + 1 ед. счета)

Измерение частоты

16. Виброизмерительный прибор

(12 ÷ 200) Гц

Измерение вибрации

Приложение 3

ПРИМЕР ГРАДУИРОВОЧНОЙ ТАБЛИЦЫ ДЛЯ ИЗМЕРИТЕЛЬНОГО КАНАЛА ТЕМПЕРАТУРЫ С ИСПОЛЬЗОВАНИЕМ ТЕРМОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ТИПА ТХА С ДИАПАЗОНОМ ИЗМЕРЕНИЯ ОТ 0 ДО 150 ˚С

Исследуемые точки

Значение входного сигнала, мВ

Температура свободных концов, °С

Приложение 4

Справочное

ПРИМЕРЫ СТРУКТУРНЫХ СХЕМ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА ПРИ КАЛИБРОВКЕ ИК

Рис. П4.1. Структурная схема проведения эксперимента
при калибровке ИК комплектным методом:

ПИП - первичный измерительный преобразователь (датчик); ИП - измерительный преобразователь;
АЦП - аналого-цифровой преобразователь; К - коммутатор; УСВК - устройство связи с вычислительным
комплексом; СПИ - средство представления информации; ВК - вычислительный комплекс; ПУ -
печатающее устройство; Э - средство калибровки эталон; ИнК - информационный комплекс

Рис. П4.2. Структурная схема проведения эксперимента
при калибровке ИК поэлементным методом:

а - образцовый сигнал подается на вход ИП; б - образцовый сигнал подается
на вход УКНП; УК - устройство коммутации; УКНП - устройство коммутации,
нормализации и преобразования; с , d - линия связи между ПИП и ЭТ ИК;
1 - рабочее состояние ИК; 2 - калибровка
Остальные обозначения см. рис. П4.1.


Приложение 5

ПРОТОКОЛ
КАЛИБРОВКИ ИК КОМПЛЕКТНЫМ МЕТОДОМ

________________________________________________

группа однотипных ИК

Применяемые эталоны и вспомогательные СИ ___

тип, класс

_______________________________________________________________________________________________________________________

точности, диапазон измерения

Нормированное значение предела допускаемой погрешности __________________________________________________________________

в единицах измеряемой величины

Таблица 1

Измеряемый параметр

Диапазон измерений

Условия калибровки

Значение входного сигнала в

Заключение о результате калибровки

Специалист по калибровке (ф. и. о.)

Подпись, число

% диапазона измерений

единицах измеряемой величины X qj

X j 1 (∆ j 1)

X j 2 (∆ j 2)

X j 3 (∆ j 3)

Таблица 2

Приложение 6

ПРОТОКОЛ
КАЛИБРОВКИ ИК ПОЭЛЕМЕНТНЫМ МЕТОДОМ

_________________________________________________

группа однотипных ИК

Применяемые эталоны и вспомогательные СИ _________________________________________________________________________________

тип, класс точности, диапазон измерения

Нормированное значение предела допускаемой погрешности ____________________________________________________________________

в единицах измеряемой величины

Таблица 1

Измеряемый параметр

Диапазон измерений

Элементы ИК

Погрешность ИК

Заключение о пригодности ИК

Специалист по калибровке (ф.и. о)

Подпись, число

ПИП (или ПИП и ИП)

Наименование

Условия эксплуатации

Погрешность измерений

Наименование

Условия калибровки

Значение входного сигнала в единицах измеряемой величины X qj

Значение выходного сигнала (погрешность измерения) в единицах измеряемой величины

основная ∆ oj

дополнительная ∆ qj

X j 1 (∆ j 1)

X j 2 (∆ j 2)

X j 3 (∆ j 3)

Таблица 2


Приложение 7

___________________________________________________________________________

наименование метрологической службы энергопредприятия

СЕРТИФИКАТ

О КАЛИБРОВКЕ ИК ИИС __________________________________________________

тип ИИС, предприятие, эксплуатирующее ИИС

___________________________________________________________________________

наименование ИК (группы однотипных ИК)

Действительные значения метрологических характеристик ИК _____________________

___________________________________________________________________________

___________________________________________________________________________

Условия проведения калибровки _______________________________________________

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

Заключение о годности ИК ___________________________________________________

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

Протокол № __________ от ____________ 20___ г.

Приложение 8

Измерительный канал ________________________________________________________

наименование ИК, тип ИИС, предприятие, эксплуатирующее ИИС

в составе ___________________________________________________________________

АСИ, их заводские номера

поверен и на основании результатов периодической поверки (протокол № ____ от ___________ г.) признан годным к применению.

Оттиск поверительного
клейма или печати

«___» ___________ г.

Список использованной литературы

. ССБТ. Кабели и кабельная арматура. Требования безопасности.

6. ПР 50.2.016-94 . ГСОЕИ. Требования к выполнению калибровочных работ.

7. РД 50-660-88. ГСОЕИ. Документы на методики поверки средств измерений.

8. Правила техники безопасности при эксплуатации тепломеханического оборудования электростанций и тепловых сетей: РД 34.03.201-97 . - М.: НЦ ЭНАС, 1997.

9. Правила техники безопасности при эксплуатации электроустановок. - М.: СПО Союзтехэнерго, 1991.

1. Общие положения. 1

2. Операции калибровки. 2

3. Средства калибровки. 2

4. Требования безопасности. 3

5. Требования к условиям калибровки. 3

6. Подготовка к калибровке. 3

7. Проведение калибровки. 3

8. Оформление результатов калибровки. 7

Приложение 1. Обязательное. Перечень технической документации, предъявляемой при калибровке ИК.. 7

Приложение 4. Справочное. Примеры структурных схем проведения эксперимента при калибровке ИК.. 8

Список использованной литературы.. 13

Все документы, представленные в каталоге, не являются их официальным изданием и предназначены исключительно для ознакомительных целей. Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ТЕХНИЧЕСКОМУ
РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

УТВЕРЖДАЮ

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

В.Н.Крутиков

« » 2006г

Государственная система обеспечения единства измерений

Системы автоматизированные информационно-измерительные
коммерческого учета электрической энергии

ТИПОВАЯ МЕТОДИКА ПОВЕРКИ

МИ 3000-2006

Москва

2006

ПРЕДИСЛОВИЕ

1. РАЗРАБОТАНА ФГУП «ВНИИМС», ФГУП «ВНИИМ», ФГУП «УНИИМ»

2. УТВЕРЖДЕНА НТК по метрологии и измерительной технике Федерального агентства по техническому регулированию и метрологии, протокол № 8 от 08 июня 2006 г.

4. ВВЕДЕНА ВПЕРВЫЕ

Настоящая рекомендация распространяется на системы автоматизированные информационно-измерительные коммерческого учета электрической энергии (АИИС КУЭ) на основе статических счетчиков электроэнергии, измерительный выходной сигнал которых передается на верхний уровень системы в цифровой форме. Такие АИИС КУЭ представляют собой интегрированную автоматизированную систему с централизованным управлением и распределенной функцией измерения, в состав которой, в общем случае, входят измерительные компоненты: измерительные трансформаторы тока (ТТ) по ГОСТ 7746-2001 , измерительные трансформаторы напряжения (ТН) по ГОСТ 1983-2001 , статические счетчики электрической энергии по ГОСТ 30206-94, ГОСТ Р 52323-2005 , ГОСТ 26035-83, устройства сбора и передачи данных (УСПД) и связующие компоненты, образующие измерительные каналы (ИК) системы. Измерительная информация в цифровой форме с выходов УСПД поступает на центральный сервер системы и/или автоматизированные рабочие места (АРМ), оснащенные персональными компьютерами с соответствующим программным обеспечением. В состав АИИС КУЭ входят также устройства синхронизации (коррекции) системного времени (УССВ) и ряд вспомогательных технических устройств - мультиплексоры, модемы, адаптеры цифровых интерфейсов и др. В отдельных случаях конкретные экземпляры АИИС КУЭ могут не содержать некоторых из перечисленных компонентов и технических устройств.

РМГ 51-2002 «ГСИ. Документы на методики поверки средств измерений. Основные положения»;

ПР 50.2.006-94 «ГСИ. Порядок проведения поверки средств измерений»;

ПР 50.2.012-94 «Порядок аттестации поверителей средств измерений»;

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Общие положения»;

ГОСТ 8.216-88 «ГСИ. Трансформаторы напряжения. Методика поверки»;

ГОСТ 4.199-85 «СПКП. Системы информационные электроизмерительные. Комплексы измерительно-вычислительные. Номенклатура показателей»;

МИ 2845-2003 «ГСИ. Измерительные трансформаторы напряжения 6/√3... 35 кВ. Методика поверки на месте эксплуатации»;

МИ 2925-2005 «ГСИ. Измерительные трансформаторы напряжения 35...330/√3. Методика поверки на месте эксплуатации с помощью эталонного делителя»;

МИ 2982-2006 «ГСИ. Измерительные трансформаторы напряжения 500...750/√3 кВ. Методика поверки на месте эксплуатации»;

ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;

ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия»;

ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия»;

ГОСТ 26035-83 «Счетчики электрической энергии переменного тока электронные. Общие технические условия»;

ГОСТ 30206-94 (МЭК 687-92) «Статические счетчики ватт-часов активной энергии переменного тока (классы точности 0,2 S и 0,5 S )»;

ГОСТ Р 52323-2005 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0.2 S и 0,5 S »;

ГОСТ 13109-97 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения»;

ГОСТ 12.2.003-91 «Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности»;

ГОСТ 12.2.007.0-75 «Изделия электротехнические. Общие требования безопасности»;

ГОСТ 12.2.007.3-75 «Система стандартов безопасности труда. Электротехнические устройства на напряжение свыше 1000 В. Требования безопасности»;

ПОТ Р М-016-2001 (РД 153-34.0-03.150-00) Межотраслевые правила по охране труда (Правила безопасности) при эксплуатации электроустановок.

1 ОБЩИЕ ПОЛОЖЕНИЯ

Поверке подлежит каждый ИК АИИС КУЭ, реализующий косвенный метод измерений электрической энергии. ИК подвергают поверке покомпонентным (поэлементным) способом с учетом положений раздела 8 ГОСТ Р 8.596-2002 .

Первичную поверку систем выполняют после проведения испытаний АИИС КУЭ с целью утверждения типа. Допускается совмещение операций первичной поверки и операций, выполняемых при испытаниях типа.

Периодическую поверку системы выполняют в процессе эксплуатации АИИС КУЭ.

Периодичность поверки (межповерочный интервал) АИИС КУЭ устанавливают при утверждении ее типа. Межповерочный интервал на АИИС КУЭ рекомендуется устанавливать не более 4 лет.

Измерительные компоненты АИИС КУЭ поверяют с межповерочным интервалом, установленным при утверждении их типа. Если очередной срок поверки измерительного компонента наступает до очередного срока поверки АИИС КУЭ, поверяется только этот компонент и поверка АИИС КУЭ не проводится. После поверки измерительного компонента и восстановления ИК выполняется проверка ИК в той его части и в том объеме, который необходим для того, чтобы убедиться, что действия, связанные с поверкой измерительного компонента, не нарушили метрологических свойств ИК (схема соединения, коррекция времени и т.п.).

Внеочередную поверку АИИС КУЭ проводят после ремонта системы, замены её измерительных компонентов, аварий в энергосистеме, если эти события могли повлиять на метрологические характеристики ИК. Допускается подвергать поверке только те ИК, которые подверглись указанным выше воздействиям, при условии, что собственник АИИС КУЭ подтвердит официальным заключением, что остальные ИК этим воздействиям не подвергались. В этом случае может быть оформлено дополнение к основному свидетельству о поверке системы с соответствующей отметкой в основном свидетельстве.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют операции, указанные в таблице 1

Таблица 1 - Операции поверки

Наименование операции

Номер пункта НД по поверке

Обязательность проведения операции при

первичной поверке

периодической поверке

1. Подготовка к поверке

Да

Да

2. Внешний осмотр

Да

Да

3. Поверка измерительных компонентов АИИС КУЭ

Да

Да

4. Проверка счетчиков электрической энергии

Да

Да

5. Проверка УСПД

Да

Да

6. Проверка функционирования центрального компьютера АИИС КУЭ

Да

Да

7. Проверка функционирования вспомогательных устройств

Да

Да

8. Проверка нагрузки вторичных цепей измерительных трансформаторов напряжения

Да

Да

9 Проверка нагрузки вторичных цепей измерительных трансформаторов тока

Да

Да

10. Проверка падения напряжения в линии связи между вторичной обмоткой ТН и счетчиком

Да

Да

11. Проверка погрешности системного времени

8.10

Да

Да

12. Проверка отсутствия ошибок информационного обмена

8.11

Да

Да

13. Оформление результатов поверки

Да

Да

3 СРЕДСТВА ПОВЕРКИ

При проведении поверки применяют средства измерений и вспомогательные устройства, в соответствии с методиками поверки, указанными в описаниях типа на измерительные компоненты АИИС КУЭ, а также приведенные в таблице 2.

Таблица 2 - Средства измерений

№ п/п

Наименование

Термометр, диапазон измерений от минус 40 до +50°С, пределы допускаемой погрешности ± 1°С

Вольтамперфазометр, диапазон измерений от 0 до 10 А

Средства измерений вторичной нагрузки ТТ в соответствии с утвержденным документом «Методика выполнения измерений мощности нагрузки трансформаторов тока в условиях эксплуатации»

Средства измерений вторичной нагрузки ТН в соответствии с утвержденным документом «Методика выполнения измерений мощности нагрузки трансформаторов напряжения в условиях эксплуатации»

Средства измерений падения напряжения в линии соединении счетчика с ТН в соответствии с утвержденным документом «Методика выполнения измеренийпадения напряжения в линии соединения счетчика с трансформатором напряжения в условиях эксплуатации»

Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы

Радиоприемник, настроенный на радиостанцию, передающую сигналы точного времени

Примечание - Допускается применение других основных и вспомогательных средств поверки с метрологическими характеристиками, обеспечивающими требуемые точности измерений.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 К проведению поверки АИИС КУЭ допускают поверителей, аттестованных в соответствии с ПР 50.2.012-94, изучивших настоящую рекомендацию и руководство по эксплуатации на АИИС КУЭ, имеющих стаж работы по данному виду измерений не менее 1 года.

4.2 Измерение вторичной нагрузки измерительных трансформаторов тока, входящих в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ «Методика выполнения измерений мощности нагрузки трансформаторов тока в условиях эксплуатации» и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже III .

4.3 Измерение вторичной нагрузки измерительных трансформаторов напряжения, входящих в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ «Методика выполнения измерений мощности нагрузки трансформаторов напряжения в условиях эксплуатации» и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже IV .

4.4 Измерение потерь напряжения в линии соединения счетчика с измерительным трансформатором напряжения, входящими в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ «Методика выполнения измерений потерь напряжения в линиях соединения счетчика с трансформатором напряжения в условиях эксплуатации» и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже IV .

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1 При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.2.007.0-75 , ГОСТ 12.2.007.3-75 , «Правилами техники безопасности при эксплуатации электроустановок потребителей», «Правилами технической эксплуатации электроустановок потребителей», «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок» ПОТ Р М-016-2001 (РД 153-34.0-03.150-00), а также требования безопасности на средства поверки, поверяемые трансформаторы и счетчики, изложенные в их руководствах по эксплуатации.

5.2 Эталонные средства измерений, вспомогательные средства поверки и оборудование должны соответствовать требованиям ГОСТ 12.2.003-91 , ГОСТ 12.2.007.3-75 .

6 УСЛОВИЯ ПОВЕРКИ

Условия поверки АИИС КУЭ должны соответствовать условиям ее эксплуатации, нормированным в технической документации, но не выходить за нормированные условия применения средств поверки.

7 ПОДГОТОВКА К ПОВЕРКЕ

7.1 Для проведения поверки представляют следующую документацию:

Руководство по эксплуатации АИИС КУЭ;

Описание типа АИИС КУЭ;

Свидетельства о поверке измерительных компонентов, входящих в ИК, и свидетельство о предыдущей поверке системы (при периодической и внеочередной поверке);

Паспорта-протоколы на ИК;

Рабочие журналы АИИС КУЭ с данными по климатическим и иным условиям эксплуатации за межповерочный интервал (только при периодической поверке).

7.2 Перед проведением поверки выполняют следующие подготовительные работы:

Проводят организационно-технические мероприятия по доступу поверителей и персонала энергообъектов к местам установки измерительных трансформаторов, счетчиков электроэнергии, УСПД; по размещению эталонов, отключению в необходимых случаях сверяемых средств измерений от штатной схемы;

Проводят организационно-технические мероприятия по обеспечению безопасности поверочных работ в соответствии с действующими правилами и руководствами по эксплуатации применяемого оборудования;

Средства поверки выдерживают в условиях и в течение времени, установленных в НТД на средства поверки;

Все средства измерений, которые подлежат заземлению, должны быть надежно заземлены, подсоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение - после всех отсоединений.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

8.1.1 Проверяют целостность корпусов и отсутствие видимых повреждений измерительных компонентов, наличие поверительных пломб и клейм.

8.1.2 Проверяют размещение измерительных компонентов, правильность схем подключения трансформаторов тока и напряжения к счетчикам электрической энергии; правильность прокладки проводных линий по проектной документации на АИИС КУЭ.

8.1.3 Проверяют соответствие типов и заводских номеров фактически использованных измерительных компонентов типам и заводским номерам, указанным в формуляре АИИС КУЭ.

8.1.4 Проверяют отсутствие следов коррозии и нагрева в местах подключения проводных линий.

8.2 Поверка измерительных компонентов АИИС КУЭ

Проверяют наличие свидетельств о поверке и срок их действия для всех измерительных компонентов: измерительных трансформаторов тока и напряжения, счетчиков электрической энергии. УСПД. При обнаружении просроченных свидетельств о поверке измерительных компонентов или свидетельств, срок действия которых близок к окончанию, дальнейшие операции по поверке ИК, в который они входят, выполняют после поверки этих измерительных компонентов.

8.3 Проверка счетчиков электрической энергии

8.3.1 Проверяют наличие и сохранность пломб поверительных и энергосбытовых организаций на счетчике и испытательной коробке. Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения счетчика к цепям тока и напряжения, в частности, правильность чередования фаз. При отсутствии таких документов или нарушении (отсутствии) пломб проверяют правильность подключения счетчиков к цепям тока и напряжения (соответствие схем подключения - схемам, приведенным в паспорте на счетчик). Проверяют последовательность чередования фаз с помощью вольтамперфазометра. При проверке последовательности чередования фаз действуют в соответствии с указаниями, изложенными в руководстве по его эксплуатации.

8.3.2 Проверяют работу всех сегментов индикаторов, отсутствие кодов ошибок или предупреждений, прокрутку параметров в заданной последовательности.

8.3.3 Проверяют работоспособность оптического порта счетчика с помощью переносного компьютера. Преобразователь подключают к любому последовательному порту переносного компьютера. Опрашивают счетчик по установленному соединению. Опрос счетчика считается успешным, если получен отчет, содержащий данные, зарегистрированные счетчиком.

8.3.4 Проверяют соответствие индикации даты в счетчике календарной дате (число, месяц, год). Проверку осуществляют визуально или с помощью переносного компьютера через оптопорт.

8.4 Проверка УСПД

8.4.1 Проверяют наличие и сохранность пломб поверительных и энергосбытовых организаций на УСПД. При отсутствии или нарушении пломб проверяют правильность подсоединения УСПД.

8.4.2 Проверяют правильность функционирования УСПД в соответствии с его эксплуатационной документацией с помощью тестового программного обеспечения. Проверка считается успешной, если все подсоединенные к УСПД счетчики опрошены и нет сообщений об ошибках.

8.4.3 Проверяют программную защиту УСПД от несанкционированного доступа.

8.4.4 Проверяют правильность значений коэффициентов трансформации измерительных трансформаторов, хранящихся в памяти процессора УСПД.

8.5 Проверка функционирования компьютеров АИИС КУЭ (АРМ или сервера)

8.5.1 Проводят опрос текущих показаний всех счетчиков электроэнергии.

8.5.2 Проверяют глубину хранения измерительной информации в центральном сервере АИИС КУЭ.

8.5.3 Проверяют защиту программного обеспечения на ЭВМ АИИС КУЭ от несанкционированного доступа. Для этого запускают на выполнение программу сбора данных и в поле "пароль" вводят неправильный код. Проверку считают успешной, если при вводе неправильного пароля программа не разрешает продолжать работу.

8.5.4 Проверяют работу аппаратных ключей. Выключают компьютер и снимают аппаратную защиту (отсоединяют ключ от порта компьютера). Включают компьютер, загружают операционную систему и запускают программу. Проверку считают успешной, если получено сообщение об отсутствии «ключа защиты».

8.6 Проверка функционирования вспомогательных устройств

8.6.1 Проверка функционирования мультиплексоров (при их наличии)

Проверяют функционирование мультиплексоров с помощью переносного компьютера, подключенного к мультиплексору (группе мультиплексора) через кабель RS 232, и специальной программы. Мультиплексор (группа мультиплексоров) считают работоспособным, если все счетчики, подключенные к данному мультиплексору (группе), были опрошены.

8.6.2 Проверка функционирования модемов (при их наличии)

Проверяют функционирование модемов, используя коммуникационные возможности специальных программ. Модемы считаются исправными в составе комплекса, если были установлены коммутируемые соединения и по установленным соединениям успешно прошел опрос счетчиков или УСПД.

Допускается автономная проверка модемов с использованием тестового программного обеспечения.

8.6.3 Проверка функционирования адаптеров интерфейса (при их наличии)

Подключают к адаптерам переносной компьютер с ПО, используя кабель RS 232. Проверка считается успешной, если удалось опросить все счетчики, подключенные к данному адаптеру.

8.7 Проверка нагрузки вторичных цепей измерительных трансформаторов напряжения

8.7.1 Проверяют наличие и сохранность пломб поверительных и энергоснабжающих организаций на клеммных соединениях, имеющихся на линии связи ТН со счетчиком. Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения первичных и вторичных обмоток ТН. При отсутствии таких документов или нарушении (отсутствии) пломб проверяют правильность подключения первичных и вторичных обмоток ТН.

При проверке мощности нагрузки вторичных цепей ТН необходимо убедиться, что отклонение вторичного напряжения при нагруженной вторичной обмотке составляет не более ±10% от U ном

Измеряют мощность нагрузки ТН, которая должна находиться в диапазоне (0,25-1,0) S н om .

Измерение мощности нагрузки вторичных цепей ТН проводят в соответствии с аттестованной в установленном порядке методикой выполнения измерений.

Примечания

1 Допускается измерения мощности нагрузки вторичных цепей ТН не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный измерительный канал в течение истекающего межповерочного интервала системы. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше условия для ТН.

2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам измерительных трансформаторов.

8.8 Проверка нагрузки вторичных цепей измерительных трансформаторов тока

8.8.1 Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения вторичных обмоток ТТ. При отсутствии таких документов проверяют правильность подключения вторичных обмоток ТТ.

8.8.2 Измеряют мощность нагрузки вторичных цепей ТТ, которая должна находиться вдиапазоне (0,25-1,0) S hom

Измерение тока и вторичной нагрузки ТТ проводят в соответствии с аттестованной в установленном порядке методикой выполнения измерений.

Примечания

1 Допускается измерения мощности нагрузки вторичных цепей ТТ не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный измерительный канал в течение истекающего межповерочного интервала системы. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше условия для ТТ.

2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам ТТ.

8.9 Проверка падения напряжения в линии связи между вторичной обмоткой ТН и счетчиком

Измеряют падение напряжения U л в проводной линии связи для каждой фазы по утвержденному документу «Методика выполнения измерений падения напряжения в линии соединения счетчика с трансформатором напряжения в условиях эксплуатации». Падение напряжения не должно превышать 0,25 % от номинального значения на вторичной обмотке ТН.

Примечания

1 Допускается измерение падения напряжения в линии соединения счетчика с ТН не проводить, если такие измерения проводились при составлении паспортов - протоколов на данный измерительный канал в течение истекающего межповерочного интервала системы. Результаты проверки считают положительными, если паспорт- протокол подтверждает выполнение указанного выше требования.

2 Допускается падение напряжения в линии соединения счетчика с ТН определять расчетным путем, если известны параметры проводной линии связи и сила электрического тока, протекающего через линию связи.

8.10 Проверка погрешности системного времени

8.10.1 Проверка УССВ

Включают радиоприемник, настроенный на радиостанцию, передающую сигналы точного времени, и в конце любого часа проверяют показания часов УССВ: смена показаний часов на 00 мин 00 с должна произойти по 6-му сигналу точного времени.

8.10.2 Распечатывают журнал событий счетчика и УСПД, выделив события, соответствующие сличению часов счетчика и УСПД. Расхождение времени часов счетчик -УСПД; УСПД - сервер (или УССВ - в зависимости от способа организации времени в системе) в момент предшествующий коррекции не должно превышать предела допускаемого расхождения, указанного в описании типа системы.

8.11 Проверка отсутствия ошибок информационного обмена

Операция проверки отсутствия ошибок информационного обмена предусматривает экспериментальное подтверждение идентичности числовой измерительной информации в счетчиках электрической энергии (исходная информация), и памяти центрального сервера.

В момент проверки все технические средства, входящие в проверяемый ИК, должны быть включены.

8.11.1 На центральном компьютере (сервере) системы распечатывают значения активной и реактивной электрической энергии, зарегистрированные с 30-ти минутным интервалом за полные предшествующие дню проверки сутки по всем ИК. Проверяют наличие данных, соответствующих каждому 30-ти минутному интервалу времени. Пропуск данных не допускается за исключением случаев, когда этот пропуск был обусловлен отключением ИК или устраненным отказом какого-либо компонента системы.

8.11.2 Распечатывают журнал событий счетчика и УСПД и отмечают моменты нарушения связи между измерительными компонентами системы. Проверяют сохранность измерительной информации в памяти УСПД и центральном сервере системы на тех интервалах времени, в течение которого была нарушена связь.

8.11.3 Распечатывают на центральном компьютере (сервере) профиль нагрузки за полные сутки, предшествующие дню поверки. Используя переносной компьютер, считывают через оптопорт профиль нагрузки за те же сутки, хранящийся в памяти счетчика. Различие значений активной (реактивной) мощности, хранящейся в памяти счетчика (с учетом коэффициентов трансформации измерительных трансформаторов) и базе данных центрального сервера не должно превышать двух единиц младшего разряда учтенного значения.

8.11.4 Рекомендуется вместе с проверкой по п. 8.11.3 сличать показания счетчика по активной и реактивной электрической энергии строго в конце получаса (часа) и сравнивать с данными, зарегистрированными в центральном компьютере (сервере) системы для того же момента времени. Для этого визуально или с помощью переносного компьютера через оптопорт считывают показания счетчика по активной и реактивной электрической энергии и сравнивают эти данные (с учетом коэффициентов трансформации измерительных трансформаторов), с показаниями зарегистрированными в центральном компьютере (сервере) системы. Расхождение не должно превышать две единицы младшего разряда.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

9.1 На основании положительных результатов по пунктам раздела 8 выписывают свидетельство о поверке АИИС КУЭ в соответствии с ПР 50.2.006-94. В приложении к свидетельству указывают перечень ИК.

При отрицательных результатах поверки АИИС КУЭ признается негодной к дальнейшей эксплуатации и на нее выдают извещение о непригодности в соответствии с ПР 50.2.006-94 с указанием причин.