Все о стройке и ремонте

Сборка типовых соединений, узлов, автомобиля. Сборка типовых соединений Типовыми сопряжениями являются

К отклонениям от точности взаимного расположения осей и поверхностей, оказывающим влияние на работу узла, относятся, например, непа-раллельность осей вала и подшипника. Допустимая линейная величина непараллельное™ ЛI должна быть меньше минимального зазора, т. е. > А1.[ ...]

Величина зазора для различных сопряжении приведена в технических условиях на сборку.[ ...]

Подбор поршней производится по зазору между поршнем и зеркалом цилиндра. Поршень без колец вставляют в цилиндр и протягиванием ленточного щупа между зеркалом цилиндра и наибольшим диаметром юбки поршня замеряют зазор. Щуп во всех цилиндрах должен протягиваться с одинаковым усилием, замеряемом динамометром.[ ...]

Правильность укладки коленчатого вала в коренных подшипниках достигается контролем затяжки болтов. Все болты должны затягиваться с одинаковым моментом, контролируемым динамометрическим ключом. Правильность укладки проверяют по величине момента, необходимого для прокручивания вала при затяжке каждого коренного подшипника в отдельности.[ ...]

При контроле зазора с помощью свинцовой пластины или проволоки их прокручивают между поверхностями зубьев.[ ...]

Допускаемые колебания боковых зазоров указаны в технических условиях на сборку узла после ремонта. В результате неточного соблюдения межцентрового расстояния и наличия непараллельное™ и перекоса осей в зубчатой передаче появляется неправильный контакт зубьев, что выявляется по расположению пятен контакта на поверхности зубьев (рис. 13.4).[ ...]

Для контроля по пятнам контакта боковые поверхности зубьев малого колеса окрашивают тонким слоем краски (берлинской лазурью, синькой и др.) и вращают колесо на два - четыре оборота в одну и другую сторону. При нормальном зацеплении пятна контакта располагаются в среднем участке боковой поверхности. У зубчатых передач средней точности пятна контакта охватывают 0,45.. .0,5 высоты зуба и 0,6...0,7 длины зуба.[ ...]

Сборка подвижных неразъемных соединений. При сборке узлов с подшипниками качения подшипники до монтажа промывают в 8-10 %-ном растворе машинного масла в бензине, а посадочные места вала и корпуса протирают чистой ветошью и смазывают машинным маслом.[ ...]

Для облегчения напрессовки подшипника на вал подшипник целесообразно нагреть в течение 10-15 мин в машинном масле, имеющем температуру 80 - 100°С. При запрессовке подшипника в корпус последний предварительно подогревают струёй горячего воздуха или погружают (малогабаритный корпус) в горячее масло. Возможно также охлаждение подшипника до температуры -75 °С в термостате с сухим льдом.[ ...]

При посадке подшипников чрезмерные натяги колец приводят к недопустимому уменьшению зазоров между кольцами и шариками и даже к защемлению шариков. Уменьшение зазора происходит в пределах 0,6-0,7 значения натяга. После напрессовки подшипника на вал проверяют радиальный и осевой зазоры с помощью индикаторного приспособления (рис. 13.6), а также легкость вращения свободного кольца подшипника.[ ...]

Рисунки к данной главе:

Резьбовые соединения являются наиболее распространенным видом разъемного соединения. Трудоемкость сборки резьбовых соединений составляет 25-40% общей трудоемкости сборочных работ. Наиболее часто применяемые резьбовые соединения:

  • винтовые;
  • болтовые;
  • шпилечные.

1. Сборка и разборка болтовых соединений

1.1. Подготовка к сборке

Сборку болтового соединения начинают с подготовки поверхностей, по которым соединяются детали. Для создания герметичности иногда плоскости пришабривают или притирают. Следует учесть, что герметичность стыка увеличивается в 2-2,5 раза при повторной сборке соединения. Величина зазора между плоскостями разъема должна быть указана в чертежах. Кованые или литые детали должны иметь обработанные поверхности под устанавливаемые крепежные детали.

1.2. Сборка болтовых соединений

Наиболее распространенный тип болтового соединения – соединение, собранное на болтах или винтах. При подготовке соединения к сборке необходимо проверить, что в собираемом соединении крепежных деталей с метрической резьбой (табл. 1) обеспечены запас резьбы, глубина сверления и выход конца винта из гайки с метрической резьбой в соответствии с табл. 1.

Таблица 1. Запас резьбы, глубины сверления и выход конца винта из гайки с метрической резьбой, мм, для крепежных деталей с метрической резьбой (значения эмпирические)

Шаг резьбы d ≥ а1 ≥ а2

(без сбега)

≥ а 3 а 4 с
1,0 6 3,5 2 6 1,5÷2,5 1,0
1,25 8 4 2,5 8 1,5÷2,5 1,6
1,5 10 4,5 3 9 2÷3
1,75 12 5,5 3,5 11 2÷3,5
2,0 16 6 4 12 2,5÷4 2
2,5 18, 20, 22 7 5 15 2,5÷5 2,5
3,0 24, 27 8 6 18 3÷6
3,5 30, 32 10 7 21 3,5÷7
4,0 36, 39 12 8 24 4÷8 3
4,5 42, 45 12 9 27 4,5÷9 4
5,0 48, 52 15 10 30 5÷10 5
Глубина завинчивания винтов, а = K p d
σ В, МПа Сталь, бронза Чугун Силумин
K p
400-500 0,8-0,9 1,3-1,4 1,4-2,0

Резьба болта или винта должна быть чистой от грязи, без забоин и слегка смазанной. Болт обычно вставляют снизу, а затем навинчивают гайку. Гайки затягивают только тогда, когда поставлены все болты, шайбы и гайки.

Затягивают гайки или винты постепенно. На длинных крышках, например на крышках блоков двигателей внутреннего сгорания, на крышках больших редукторов, гайки или винты затягивают от середины к краям. Гайки или винты, расположенные по кругу, например на фланцах крышек цилиндров и т. д., затягивают крест-накрест. Сначала все гайки или винты завертывают до соприкосновения с шайбами или с поверхностью детали, затем слегка затягивают и только в третий раз затягивают окончательно.

Если гайки или винты затягивать последовательно, то затяжка может оказаться неравномерной и вызвать перегрузку отдельных гаек, смятие резьбы и даже обрыв болта. Затягивание гаек от краев к середине приводит к искривлению крышек.

Контроль усилия затяжки винтов и болтов осуществляют либо выбором соответствующей длины рукоятки ключа, либо применением предельных и динамометрических ключей.

Для затяжки крепежного резьбового соединения осевой силой F (рис. 1) необходимо создать момент завинчивания Мзав, равный сумме момента сил в резьбе d и момента сил трения на опорной поверхности гайки.

Рис. 1.

Длина стандартных ключей L ≈ 15d. Приложив к концу ключа силу Fp, можно определить отношение F/Fp, т. е. выигрыш в силе за счет резьбы. Так как Мзав=FpL, то 0,2Fd=15Fpd, откуда F/Fp ≈ 75.

Таблица 2. Допускаемая сила затяжки резьбового крепежного соединения

d, мм М8 М10 М12 М16 М20 М24 М30
, кН 1,40 2,40 3,60 7,50 14,0 23,0 45,0
S = D, мм 12 14 17 22 27 32 41

Расчет и практика эксплуатации резьбовых соединений показали, что болты с резьбой менее М10 при затяжке стандартными ключами (L ≈ 15d) могут быть разрушены. Например, болт с резьбой М6 из стали СтЗ разрушается при силе на ключе Fр ≈ 45H.

Поэтому в резьбовых соединениях для машин технологического назначения, как правило, не применяют болты с резьбой менее М8 (безопасная затяжка болтов малых диаметров осуществляется специальными ключами, ограничивающими размер силы Fр).

После сборки болтовое соединение должно быть застопорено от отвинчивания.

1.3. Стопорные устройства для резьбовых крепежных соединений

Резьбовые соединения в процессе работы не должны ослаблять соединение закрепленных деталей, т.е. они не должны самопроизвольно отвинчиваться под действием вибраций, возникающих при движении, толчках и ударах деталей машин во время работы. Поэтому ответственные резьбовые соединения после затяжки стопорят.

Стопорение ответственных резьбовых соединений производят разными способами. Их выбор зависит от доступа к местам крепления, от условий работы соединения, от конструкции соединения и др. Различают следующие способы предохранения резьбовых элементов от самоотвинчивания:

  • контргайкой (рис. 2, а) , которая препятствует самоотвинчиванию силой трения в резьбе и на торцовых поверхностях двух гаек. Этот способ позволяет легко регулировать силу затяжки резьбового соединения, фиксируя положение нижней гайки путем поворота верхней гайки после касания на соответствующий угол затяжки;
  • пружинными шайбами (рис. 2, б), которые обеспечивают напряженное состояние резьбового соединения. Пружинная шайба имеет высокую твердость, концы разреза разведены и заострены. Это позволяют произвести затяжку соединения и расплющить шайбу. При этом заостренные концы разреза пружинной шайбы прижаты к торцу гайки или головки болта и к поверхности закрепляемой детали (рис. 2, ж).

Шайбы специального назначения применяют как стопорные детали, предотвращающие самоотвинчивание гаек, болтов. Примеры таких шайб приведены на рис. 2, е.


Рис. 2.

При отвертывании под действием пружинных сил заостренные концы разреза пружинной шайбы внедряются в металл гайки или головки болта и в металл закрепляемой детали и тем самым удерживают болт или гайку от отвинчивания; разводными шплинтами (рис. 2, в) – один из распространенных и наиболее надежных способов. Разводные шплинты изготовляют с кольцевой головкой из стальной проволоки полукруглого сечения. Концы шплинта вставляют в отверстие, соединяющее болт с гайкой, и разводят; мягкой проволокой (рис. 2, г), которую применяют для нескольких и целых групп болтов. При этом головки болтов должны быть соединены проволокой так, чтобы ослабление затяжки одного из них вызывало натяжение проволоки и этим способствовало затяжке остальных; жестким соединением резьбовых деталей, которое осуществляют применением деформируемых стопорных шайб с носком (рис. 2, д) и с лапкой (рис. 2, е). Деформируемая шайба такой формы имеет выступы. Один из них, вставляется в отверстие детали или обжимается по краю детали, а другие отгибают и прижимают к грани завернутого болта или гайки, чем фиксируют их от отвинчивания; путем сварки головки винта, болта, гайки или шпильки (рис. 2, ж); посредством кернения резьбовых деталей с торца и бокового (рис. 2, з), расклепывания стержня резьбовой детали, закрашиванием лаком выхода резьбы из гайки и др.

Для стандартной крепежной резьбы угол подъема резьбы Ψ≤4°, а приведенный угол трения φ’ в зависимости от материала гайки и винта – φ’=6 ÷ 16°, следовательно, все крепежные резьбы – самотормозящие и при статической нагрузке не самоотвинчиваются.

Мелкие крепежные резьбы (по сравнению с крупными) имеют меньший угол подъема резьбы и поэтому они менее склонны к самоотвинчиванию при динамических нагрузках.

1.4. Разборка болтового соединения

Разборку болтового соединения начинают с освобождения гаек от стопорных устройств. После этого приступают к отвинчиванию гаек. Если гайка не отвинчивается, то не следует удлинять рукоятку ключа или прикладывать большие усилия, так как этим можно сорвать резьбу или скрутить болт. В этом случае смачивают резьбу керосином и через некоторое время (когда керосин проникнет в резьбу) вновь пытаются отвинчивать гайку. Если гайка после этого тоже не отвинчивается, то пробуют завинтить ее дальше и когда она сдвинется с места, вновь начинают отвинчивать.

Когда все гайки отвинчены, удаляют болты.

Затем начинают последовательно завинчивать отжимные болты до тех пор, пока зазор между деталями не будет достаточным для того, чтобы снять деталь или сборочную единицу.

1.5. Подготовка к сборке других резьбовых соединений

Подготовка к сборке других резьбовых соединений заключается в проверке соответствия размеров сбегов, недорезов, проточек и фасок на соединяемых резьбовых деталях по нормам, приведенным в табл. 3, 4, 5.

Таблица 3. Сбеги, недорезы, проточки и фаски для трубной цилиндрической резьбы (по ГОСТ 10549-80)


Размеры Число Наружная резьба Внутренняя резьба
сбег х недорез, проточка фаска сбег недорез, проточка фаска
f R R 1 d f f R R 1 d f
1/8 28 1,6 2,5 2,5 1,0 0,5 8 1,0 2,2 4 4 1,0 0,5 10,0 1,0
1/4 18 2,4 4,0 4 1,0 0,5 11 1,6 3,3 5 5 1,6 13,5
1/2 14 4,5 5,0 5 1,6 18 2,0 4,8 8 8 2,0 1,0 21,5 1,6
1 11 4,1 6,0 6 1,0 29,5 2,5 6,0 10,0 10 3,0 34,0
2 1 / 2 71,5 76
3 84 89
4 109 114
5 134,5 139
6 160 165

Таблица 4. для конической дюймовой резьбы с углом профиля 60° по ГОСТ 6111-52


Размеры Число

витков на 1”

Наружная резьба Внутренняя резьба
сбег недорез проточка сбег недорез проточка фаска с=с 1
b r r 1 d 4 b r r 1 d 4
1/16 27 2,5 3,5 2 0,5 0,3 6 3,0 6 3 1,0 0,5 8,5 1,0
1/4 18 3,5 5,5 3 1,0 0,5 11 4,0 9 4 14,0 1,6
1/2 14 4,5 6,0 4 18 5,5 11 6 1,6 1,0 22,0
1 5,5 7,0 5 1,6 29 6,5 14 7 34,0 2,0

Таблица 5. Сбеги, проточки и фаски для трапецеидальной однозаходной резьбы по ГОСТ 10549-80


Шаг резьбы Проточка Фаска
f R R 1 наружная

резьба d f

внутренняя

резьба d f

2 3 1,0 0,5 d-3,0 d+1,0 1,6
3 5 1,6 d-4,2 2,0
4 6 1,0 d-5,2 d+1,1 2,5
5 8 2,0 d-7,0 d+1,6 3,0
6 10 3,0 d-8,0 3,5
8 12 d-10,2 d+1,8 4,5
10 16 d-12,5 5,5
12 18 d-14,5 d+2,1 6,5
16 25 5,0 2,0 d-19,5 d+2,8 9,0
20 d-24,0 d+3,0 11,0
24 30 d-28,0 d+3,5 13,0

1.6. Постановка контрольных штифтов

Для возможности установки на прежнее место снятую тщательно выверенную и приработанную деталь или сборочную единицу применяют конические или цилиндрические штифты.

Штифтовые соединения применяют для фиксации взаимного положения деталей (рис. 3). В качестве распространенного примера можно привести фиксацию двумя коническими штифтами взаимного положения корпуса и крышки редуктора (рис. 3, б), чем обеспечивается сохранение их взаимного положения при совместной механической обработке, сборке и разборке редуктора.

Рис. 3. а – с цилиндрическим штифтом; б, в, – с коническим штифтом

Диаметр штифта должен быть на 20 ÷ 30% меньше диаметра болта или винта, которым крепится деталь или сборочная единица.

Отверстия под контрольные штифты сверлят после того, как соединяемые детали выверены относительно друг друга и закреплены окончательно.

Штифтов в соединении должно быть не менее двух, и они должны быть расположены друг от друга на максимально возможном расстоянии. Например, при соединении деталей прямоугольной формы контрольные штифты ставят по диагонали между крепежными деталями. При сверлении отверстий под штифты оставляют припуск на развертывание посадочного отверстия под устанавливаемый штифт.

Цилиндрические штифты обычно ставят на рабочее место с гарантированным натягом K7/m6 или по переходной посадке Н7/m6, а в движущихся соединениях – с расклепыванием концов.

Окончательно забитый штифт должен выступать над поверхностью на размер не менее двух фасок. Если нет возможности выбить штифт или отверстие несквозное, то применяют вытяжные штифты (рис. 3, в).

2. Сборка и разборка соединений на шпильках

Соединения на шпильках осуществляют неподвижной посадкой шпилек в тело детали одним из четырех способов:

  • по сбегу резьбы;
  • с помощью плотной резьбы;
  • с помощью бурта и с упором в дно отверстия.

Правильно завернутая шпилька в отверстие должна сидеть плотно и при отвинчивании гайки даже с тугой резьбой не должна вывинчиваться из детали. Шпилька должна быть строго перпендикулярна той плоскости, в которую она ввернута. Глубину отверстия делают больше длины резьбовой части шпильки. В глухих отверстиях резьбу нарезают с большой осторожностью.

Шпильки завертывают и вывертывают разными способами.

Первый способ. На свободный резьбовой конец шпильки навинчивают две гайки и верхней гайкой контрят нижнюю. Вращая ключом за верхнюю гайку, ввертывают шпильку в резьбовое отверстие плотно на сбег резьбы.

Второй способ. На конец шпильки свободно навинчивают специальное приспособление (рис. 4, а), представляющее собой высокую шестигранную гайку с внутренней резьбой для шпильки. Гайка стопорится на конце шпильки винтом, который упирается в торец шпильки. Затем обычным гаечным ключом вращают гайку за наружный шестигранник и завинчивают шпильку в деталь. Когда шпилька завинчена, стопорный винт ослабляют, придерживая гайку ключом; после этого гайка легко свинчивается со шпильки.

Для повышения производительности используют электро- и пневмоинструмент с применением специальной головки для шпильковерта (рис. 4, б). Сменную гайку 1 навинчивают на шпильку до упора-шарика 2, перемещение которого ограничивается пятой 3. При завертывании шпильковертом шпильки до конца в резьбовое отверстие в головке шарик 2 будет проскальзывать по пяте 3. После этого шпильковерт переключают на обратный ход, и головка свинчивается со шпильки.

Рис. 4.

Используя сменные гайки 1 можно завинчивать шпильки различного диаметра. Наличие на хвостовике шести граней 4 под ключ позволяет использовать головку при завинчивании гаек вручную.

При установке шпилек необходимо выполнять следующие основные правила:

  1. шпилька должна иметь плотную посадку в корпусе;
  2. ось шпильки должна быть перпендикулярна к поверхности детали.

Контроль установки резьбовых шпилек осуществляется одним из двух способов:

  • по шаблону для нескольких шпилек (рис. 5, а);
  • по угольнику или шаблону на каждую шпильку (рис. 5, б).

Рис. 5.

Категорически запрещается подгибать шпильки, если они не попадают в отверстия детали, так как они при этом деформируются у корня (по резьбе) и могут лопнуть во время работы. Перекос шпилек можно исправлять только нарезанием новой резьбы в отверстии.

Важным условием нормальной работы резьбового соединения являются отсутствие изгибающих напряжений в стержне болта или шпильки. В связи с этим неплотное прилегание гайки к торцу детали недопустимо. Гайки должны навертываться на шпильки от руки до соприкосновения с деталью. При большом числе гаек рекомендуется завертывать их в определенном порядке Общий принцип затяжки – сначала затягивают гайки, находящиеся в середине детали, затем попеременно по паре с каждой стороны. Гайки целесообразно затягивать постепенно, т. е. сначала затянуть все гайки на одну треть затяжки, затем на две трети и, наконец, на полную затяжку. Гайки, расположенные по кругу, следует затягивать крест-накрест и также постепенно.

Следует особо тщательно выбирать крепежные детали для крепления фланцев и крышек, прижимающих прецизионные подшипники шпиндельных узлов. Перекосы резьбы или торцов винтов и зенковок под головки винтов приводят к деформации фланцев и крышек и, как следствие, к перекосу самого подшипника. Большое значение в этих случаях приобретает также равномерность затяжки.

К резьбовым соединениям предъявляют следующие требования:

  • все гайки, входящие в резьбовые соединения, должны быть до отказа и равномерно затянуты;
  • в резьбовых соединениях, работающих при толчках, ударах, вибрации, гайки должны быть застопорены (затянуты контргайкой), а у подкладных шайб – отогнуты выступы, вставлены штифты и т. д.;
  • болт или шпилька должны выступать над гайкой не менее чем на два витка резьбы;
  • на выступающих концах болтов и шпилек резьба должна быть чистой и полной;
  • под гайками и головками болтов не должно быть зазоров, и они должны плотно соприкасаться с соединяемыми деталями;
  • при сборке болтовых соединений не допускается наращивание рукояток ключей. Применять можно ключи только с рукоятками стандартной длины.

СБОРКА ТИПОВЫХ СОЕДИНЕНИЙ

Сборка неразъемных соединений

Неразъемные соединения деталей машин могут быть неподвижными и подвижными.

Неразъемные неподвижные соединения получают сваркой, пайкой, склеиванием, клепкой, развальцовкой, комбинированными способами, например, запрессовкой с последующей развальцовкой или сваркой и др. Наиболее часто неразъемные соединения образуются посредством сварки.

При сборке соединений сваркой требуется правильно установить и закрепить соединяемые детали. Для этого служат различные устройства — переносные и стационарные, некоторые из которых показаны на рис. 6.8.

Переносные сборочные приспособления, к которым относятся струбцины, стяжки, распорки, домкраты, приспособления с магнитами и др. широко применяются в условиях мелкосерийного или единичного производства.

Струбцины (рис. 6.8, а) служат для фиксации определенного положения деталей и соединения их между собой перед сваркой.

Винтовые стяжки обеспечивают правильное взаимное расположение кромок соединяемых деталей. Например, стяжка (рис. 6.8, 6) состоит из двух винтовых струбцин 7 и 3, которые закреплены на кромках свариваемых деталей и соединены между собой винтами 2 и 4. Каждый из этих винтов имеет участки с правой и левой резьбой. Благодаря этому при вращении винта струбцины перемещаются в противоположных направлениях (сходятся или расходятся). С помощью винта 4 выравнивают кромки, а винтом 2 стягивают свариваемые детали для обеспечения между ними необходимого для сварки зазора.

Электромагнитные фиксаторы применяются для обеспечения установленного зазора между кромками свариваемых деталей (рис. 6.8, в), а также для фиксации их перед сваркой угловых и стыковых соединений (рис. 6.8, г).

Для установки соединяемых деталей в удобное для сварки положение применяют различное стационарное оборудование и приспособления — манипуляторы, кондукторы и т.д. Манипулятор (рис. 6.8, д), состоит из корпуса 7, установленного на опорах 8, поворотного стола 5 с планшайбой б и меха низма вращения (рис. 6.8, е). Вращение планшайбы осуществляется через червячные редукторы 9 и 10 от электродвигателя М, который связан через зубчатые колеса 15 с тахогенератором 14.

Механизм наклона (рис. 6.8, ж) также приводится в движение от электродвигателя М через ременную передачу, червячный редуктор 13 и зубчатый сектор 12, который поворачивает стол 11 манипулятора на заданный угол. В крайних положениях механизм наклона отключается автоматически с помощью конечных выключателей.

Кондукторы обычно применяются для сварки сложных деталей, например корпусных, различных металлоконструкций, когда требуется обеспечить достаточно высокую точность относительного расположения свариваемых элементов. Для этого последние фиксируются относительно друг друга и базовых элементов кондуктора с помощью стационарных или сменных зажимных устройств.

Сборка посредством клепки . В ряде случаев при изготовлении металлических конструкций — ферм, рам, балок и др. вместо сварных применяются заклепочные соединения. Клепка — это процесс соединения деталей с помощью заклепок. Заклепочное соединение относится к группе неразъемных, так как разъединить склепанные детали можно только путем разрушения заклепок. Применяются заклепки с полукруглой (высокой и низкой), плоской, потайной и полупотайной головкой, диаметром стержня до 36 мм и длиной до 180 мм из материалов, обладающих хорошей пластичностью: сталей Ст2; СтЗ; 10; 15, меди М3; MT, латуни Л63, алюминиевых сплавов АМг5П; Д18; АД1, для ответственных соединений — из легированной стали 9Г2; X18H9T. Заклепки, как правило, должны быть из того же вида материала, что и соединяемые детали, так как в противном случае коррозионные процессы в заклепочном соединении протекают более интенсивно.

Место соединения деталей заклепками называют заклепочным швом. Расстояние от центра заклепки до фая склепываемых деталей должно составлять 1,5 диаметра заклепки. Необходимое число, диаметр и длину заклепок определяют расчетным путем. Длину стержня заклепки выбирают в зависимости от толщины склепываемых листов (пакета) и формы замыкающей головки.

Длину стержня заклепки с замыкающей потайной головкой (рис. 6.9, а) определяют по формуле

L = S + (0,8-1,2)d,

Где L — длина стержня заклепки, мм; S — толщина склепываемых деталей в пределах длины стержня; d—диаметр заклепки, мм.

Рис. 6.9. Элементы заклепочного соединения: а — с потайной головкой; 6 — с полукруглой головкой; 1 — замыкающая головка; 2 — стержень; 3 — закладная головка; L — длина заклепки; d — диаметр заклепки; Ɩ 0 — длина заклепки под замыкающую головку; S — толщина склепываемых деталей

Для заклепки с замыкающей полукруглой головкой (рис. 6.9, 6) принимают L = S + (1,2-1,5)d.

По расчетному значению длины стержня заклепки подбирают ближайшее большее значение из установленных стандартом.

В зависимости от диаметра заклепки отверстия в склепываемых листах (пакетах) сверлят или пробивают. Диаметр отверстия должен быть больше диаметра заклепки: на 0,1 мм при диаметре заклепки до 4 мм и на 0,2 мм при большем диаметре.

В зависимости от характеристики и назначения заклепочного соединения различают прочные, плотные и прочноплотные заклепочные швы.

Прочный шов, состоящий из нескольких рядов заклепок, применяют для получения соединений повышенной прочности (балки, колонны, рамы и другие несущие металлические конструкции). Плотный шов применяют для обеспечения герметичности резервуаров, которая достигается за счет применения различных прокладок, например, из бумаги, ткани, пропитанных олифой или суриком. Прочноплотный шов применяют для получения прочного и непроницаемого для пара, газа и жидкостей соединения. Прочноплотные швы выполняют горячей клепкой с помощью клепальных машин с последующей подчеканкой головок заклепок и кромок листов.

Процесс клепки включает следующие основные операции:

— образование отверстия под заклепку в соединяемых деталях сверлением или пробивкой;

— зенкование гнезда под головку заклепки (при потайной или полупотай-ной головке);

— фиксация склепываемых деталей с помощью штифтов и сжатие деталей между собой;

— образование замыкающей головки заклепки, т.е. собственно клепка.

Образование замыкающей головки может происходить при быстром (ударная клепка) и медленном (прессовая клепка) воздействии на стержень заклепки. Применяется также взрывной способ клепки с помощью взрывных заклепок. Заклепка взрывная имеет в конце стержня углубление (камеру), заполненное взрывчатым веществом, которое защищено от проникновения атмосферной влаги слоем лака.

Клепку подразделяют на холодную (без нагрева заклепок) и горячую, предусматривающую нагрев стержня заклепки до 1000—1100 °С. При горячей клепке стержень заклепки лучше заполняет отверстие в склепываемых деталях, а при охлаждении заклепка лучше стягивает их. Обычно применяют холодную клепку.

Замыкающая головка при ударной клепке формируется двумя способами (рис. 6.10). По первому способу закладную головку вводят в углубление поддержки, а замыкающая головка образуется под ударами молотка по форме, обеспечиваемой обжимкой. При обратном способе, применяемом для склепывания в труднодоступных местах, удары наносят по закладной головке. Замыкающая головка образуется в результате взаимодействия с поддержкой.

Рис. 6.10. Схема клепки: а — обычным способом; 6 — обратным способом; 1 — поддержка; 2 — закладная головка заклепки; 3 — обжимка

Различают клепку ручную, механизированную, при которой применяют пневматические клепальные молотки, и машинную, выполняемую на прессах одинарной и групповой клепки при большом объеме работ.

Необходимое усилие холодной клепки (в кН) на прессах составляет не менее 250F, а горячей клепки 100F, где F— площадь поперечного сечения заклепки, см2. Пресс выбирают из расчета, что он должен обеспечить превышение расчетного усилия клепки на 20—40 %.

Сборка разъемных соединений

Разъемные соединения (резьбовые, шпоночные, шлицевые, штифтовые и др.) являются наиболее распространенными.

Сборка резьбовых соединений . Они служат для обеспечения прочности и герметичности разъемных соединений, регулирования взаимного расположения и обеспечения неподвижности сопрягаемых деталей. Сборка резьбовых соединений осуществляется постановкой болтов, гаек, винтов, шпилек.

Основным конструктивным параметром, определяющим посадку резьбового соединения, является средний диаметр резьбы. В зависимости от его значения посадка может быть ходовой, скользящей, плотной и с гарантированным натягом. Наиболее распространена скользящая посадка.

Простейшим ручным инструментом для сборки резьбовых соединений являются гаечные и накидные ключи.

Предельный момент, необходимый для затяжки ответственных соединений, определяется посредством динамометрического ключа с измерением возникающего осевого усилия при помощи динамометра. Это усилие можно определить также, измерив удлинение болта.

Напряжение растяжения в болте при затяжке не должно превышать 0,5—0,7 предела текучести его материала. При знакопеременной нагрузке может оказаться, что Рзат = 0. В таком случае гайка может отвернуться и для исключения этого необходимо ее стопорение шплинтом, контргайкой, пружинной шайбой или другим предусмотренным в конструкции элементом.

Постановка шпилек в деталь осуществляется двумя способами. Первый состоит в том, что шпилька заворачивается свободно до сбега резьбы, и при дальнейшем ее вращении создается натяг в витках сбега. При втором способе плотность посадки шпильки обеспечивается путем создания натяга по среднему диаметру всех витков резьбы, для чего увеличивают ее средний диаметр. В мягкие материалы шпильки ввертываются с большим натягом.

При наличии в узле большого числа шпилек или болтов для предупреждения деформации детали гайки должны заворачиваться в определенной последовательности. Так, если сопрягаемые детали имеют прямоугольную форму, то сборку соединения следует начинать с завинчивания средних гаек (рис. 6.11). При расположении гаек по окружности каждая последующая завинчиваемая гайка должна располагаться диаметрально противоположно предыдущей. Гайки завинчивают за несколько этапов (циклов).

Рис. 6.11. Схема сборки резьбового соединения 1—10 — последовательность затяжки гаек

Например, при трех этапах на первом этапе заворачивают средние гайки на 1/3 усилия затяжки, а затем — все остальные гайки на ту же величину. На последующих втором и третьем этапах усилие затяжки доводят до требуемого значения.

Для обеспечения определенного момента затяжки применяют предельные и динамометрические ключи. На рис. 6.12 показан торцовый предельный ключ с регулируемым крутящим моментом. Применяются также ручные предельные ключи.

Рис. 6.12. Регулируемый торцовый ключ: 1 - корпус; 2 - паз; 3 - штифт; 4 - гильза; 5 - пружина; б, 7 - гайки; 8 – головка

Рис. 6.13. Ключ динамометрический: 1 — стержень; 2 — рукоятка; 3 — шкала; 4 — указатель

Головка 8 соединена с гильзой 4 штифтом 3. Зубья на торцах гильзы 4 и корпуса 1 находятся в зацеплении под действием пружины 5. При достижении предельного момента затяжки штифт 3 скользит по наклонному пазу 2 в гильзе 4, включая вращение головки 8 ключа.

Величина предельного момента определяется усилием сжатия пружины 5, которое регулируется гайкой 6.

При завертывании гайки или болта ручным динамометрическим ключом (рис. 6.13) стержень 1 под действием приложенного к рукоятке 2 усилия упруго изгибается.

Величина прогиба стержня пропорциональна приложенному усилию и, следовательно, передаваемому ключом крутящему моменту.

Она фиксируется с помощью указателя 4 по шкале 3, которая проградуирована или протарирована для измерения крутящего момента. Затягивание гайки или болта прекращается при достижении указателем 4 соответствующего деления шкалы 3.

Наряду с ручными для сборки резьбовых соединений широко применяются механизированные инструменты с электро- или пневмоприводом. По принципу ограничения величины передаваемого крутящего момента они разделяются на три основных типа. К первому типу относятся инструменты с ограничением передаваемого крутящего момента с помощью упругого элемента (пружины), ко второму — инструменты ударно-импульсного действия и к третьему — пневматические инструменты прямого действия (без ограничительных устройств).

В инструменте первого типа (рис. 6.14) от электродвигателя 9 через редуктор 8 крутящий момент передается на ведущую полумуфту 7 кулачковой муфты. Под действием пружины 5 ведомая полумуфта 6 входит в зацепление с полумуфтой 7. Величина передаваемого кулачковой муфтой крутящего момента зависит от усилия сжатия полумуфт пружиной 5, для регулировки которого предназначена гайка 4. Муфта 3 служит для передачи вращательного движения наконечнику 1, в котором закрепляют сменные рабочие инструменты для заворачивания болтов, гаек, винтов. Эта муфта входит в зацепление при приложении к ней со стороны инструмента осевого усилия и расцепляется под действием пружины 2 в нерабочем состоянии.

Инструмент второго типа (рис. 6.15) оснащен пневматическим двигателем 5. При нажатии через курок 6 и толкатель 7 на клапан 8 сжатый воздух поступает в роторный пневматический двигатель 5, который через ударно-импульсную муфту 3—4 приводит во вращение шпиндель 2 с наконечником 7 для установки рабочего инструмента. При вращении обоймы 4 ролики ударяют по выступам а шпинделя 2, обеспечивая затяжку резьбового соединения.

Рис. 6.14. Схема инструмента для сборки резьбовых соединений: 1 — наконечник; 2, 5 — пружины; 3 — муфта; 4 — гайка регулировочная; 6, 7 — полумуфты; 8 — редуктор; 9 — электродвигатель

Рис. 6.15. Гайковерт ударно-импульсного действия: 1 — наконечник; 2 — шпиндель; 3 — ролик; 4 — обойма; 5 — пневмодвигатель; 6 — курок; 7 — толкатель; 8 — клапан

В инструментах третьего типа вал ротора пневмодвигателя через редуктор жестко соединен с рабочим шпинделем. По мере затяжки резьбового соединения вращение ротора затормаживается и при определенном сопротивлении со стороны завинчиваемой детали прекращается. Инструменты третьего типа обеспечивают наименьшую неравномерность усилия затяжки (0,08—0,1), что в два раза меньше, чем у инструментов других типов.

Для одновременной сборки нескольких резьбовых соединений применяются многошпиндельные гайковерты. В процессе эксплуатации тяжелые механизированные инструменты удерживаются на подвесках, например в виде пружинных блоков.

Мощные гайковерты закрепляют также на каретках, перемещаемых по монорельсу.

Сборка шпоночных, шлицевых и штифтовых соединений . Данные соединения служат для передачи крутящего момента от вала к ступице колеса, шкива, муфты и т.п. или, наоборот, от этих деталей — к валу, а некоторые из них — также для фиксации их относительного положения на валу в осевом направлении. Эти соединения в основном стандартизованы.

Шпоночные соединения разделяются на две группы: ненапряженные призматические (рис. 6.16, а) и сегментные (рис. 6.16, б); напряженные клиновые (тангенциальные, фрикционные, на лыске и врезные) (рис. 6.16, д). Призматические шпонки могут быть обыкновенными со скругленными или плоскими концами (служат только для передачи крутящего момента), направляющими и скользящими, которые служат также для направления относительного перемещения деталей соединения.

Направляющая шпонка крепится к валу (рис. 6.16, в), а скользящая (рис.6.16,г) монтируется в ступице и удерживается в ней с помощью специального выступа цилиндрической формы. Скользящие шпонки применяются, когда требуется значительное перемещение ступицы вдоль вала.

Сегментные врезные шпонки, как и призматические, воспринимают нагрузку боковыми гранями, но по сравнению с ними имеют меньшую нагрузочную способность. Поэтому при необходимости по длине вала могут быть установлены две или три сегментные шпонки. Их преимуществом является простота изготовления, как самих шпонок, так и пазов под них, недостатком — необходимость более глубоких пазов в валах, что снижает их прочность.

Клиновые шпонки (рис. 6.16, д) в совокупности с валом и ступицей образуют напряженные шпоночные соединения, поэтому они способны передавать не только крутящий момент, но и осевое усилие. В эту группу входят четыре вида шпонок — врезные, на лыске, фрикционные и тангенциальные.

Врезная шпонка, имеющая прямоугольное поперечное сечение, устанавливается в пазы, выполненные в валу и ступице. Она обеспечивает надежное соединение и передачу значительных крутящих моментов, но снижает прочность вала на 6...10 %. Соединение со шпонкой, установленной на лыске вала, незначительно ослабляет его, но oблaдaef пониженной нагрузочной способностью. Тангенциальная шпонка, состоящая из двух клиньев, устанавливаемых навстречу друг другу в канавку вала вдоль его образующей, обеспечивает передачу крутящего момента только в одну сторону. При необходимости реверсирования устанавливают две шпонки под углом 120°, которые передают большие крутящие моменты, но снижают прочность вала.

Рис. 6.16. Типы шпонок: а — призматическая; б — сегментная; в — скользящая; г — направляющая; д — клиновые: 1 — тангенциальная; 2 — фрикционная; 3 — на лыске; 4 — врезная

Качество сборки шпоночных соединений зависит в первую очередь от соблюдения посадок в сопряжении шпонки с валом и ступицей. Одной из основных причин смятия боковых поверхностей шпонки является увеличение зазора в соединении. Причиной смятия шпонки может также быть неправильное расположение шпоночного паза на валу. Это может значительно затруднить сборку шпоночного соединения и вызвать перекос охватывающей детали на валу. Поэтому при пригонке призматических и сегментных шпонок вначале необходимо по калибру пришабрить боковые стенки паза на валу, которые должны располагаться параллельно его оси с допускаемым отклонением до 0,01 мм на 200 мм длины. Затем по пазу пригоняется шпонка с обеспечением требуемой посадки. Призматические и сегментные шпонки устанавливают в канавки легкими ударами медного молотка, причем между верхней плоскостью шпонки и дном охватывающей детали должен быть зазор. Отсутствие зазора может быть причиной смещения и радиального биения охватывающей детали.

Клиновые шпонки позволяют до минимума уменьшить зазор в шпоночном соединении. При сборке соединения с клиновой шпонкой следует учитывать возможность смещения оси охватывающей детали относительно оси вала, что приводит к ее радиальному биению, а также перекоса детали по ее длине из-за разницы в уклонах дна шпоночного паза и шпонки. Поэтому дно паза под клиновую шпонку выполняется с уклоном, равным уклону клина шпонки, а в технологии сборки должен быть предусмотрен контроль точности установки охватывающей детали по указанным параметрам.

Шлицевые соединения по сравнению со шпоночными обеспечивают передачу больших крутящих моментов, более точное центрирование ступицы на валу и лучшее направление при перемещении ступицы по валу.

В станочном оборудовании применяются преимущественно стандартные шлицевые соединения с прямобочными и эвольвентными шлицами. Наиболее распространены прямобочные шлицевые соединения с центрированием по наружному или внутреннему диаметрам, а также по боковым поверхностям шлицов. Эвольвентное шлицевое соединение применяют с центрированием по боковым поверхностям шлицов и наружному диаметру. По сравнению с прямобочными они обладают более высокой прочностью. Однако из-за более высокой стоимости протяжек для обработки эвольвентных шлицевых отверстий в ступице эти соединения применяются реже.

Неподвижные шлицевые соединения бывают тугоразъемные и легкоразъемные. Поверхности шлицов не должны иметь заусенцев, задиров и забоин, которые могут вызвать перекос деталей. При сборке тугоразъемных соединений охватывающую деталь рекомендуется предварительно нагреть до температуры 80—130 °С.

В неподвижных шлицевых соединениях, имеющих посадки с натягом, охватывающую деталь обычно напрессовывают на вал с помощью специального приспособления или пресса.

Штифтовые соединения . Штифты служат для фиксации при сборке точного взаимного расположения деталей. Применяются также специальные срезные штифты, являющиеся предохранительными элементами.

По форме различают цилиндрические гладкие (рис. 6.17, а), конические гладкие (рис. 6.17, г), конические и цилиндрические с насеченными канавками штифты (рис. 6.17, б, в). Штифты с насечками не требуют развертывания отверстий и обеспечивают повышенную надежность от выпадания без дополнительных средств закрепления.

Конические штифты имеют конусность 1:50, обеспечивающую надежное самоторможение и центрирование деталей. Они бывают следующих типов: гладкие; с резьбовой цапфой (рис. 6.17, д); с внутренней резьбой (рис. 6.17,е), обеспечивающей легкую разборку соединения; разводные (рис.6.17, ж), позволяющие повысить надежность соединения.

Рис. 6.17. Штифты и штифтовые соединения: а — цилиндрическое штифтовое соединение; б, в — штифты цилиндрические с насечными канавками; г — коническое штифтовое соединение; д—ж— исполнения конических штифтов

Сверление и последующее развертывание отверстия под штифт производят в обеих деталях в сборе. Предпочтительны сквозные отверстия под штифты, что упрощает разборку соединения.

Глубина глухого отверстия должна быть достаточной для его развертывания на необходимую глубину с учетом заборной части развертки и чтобы находящийся в отверстии в сжатом состоянии воздух не мог вытолкнуть штифт при работе механизма. Последнее относится к цилиндрическим штифтам, которые для исключения выталкивания воздухом выполняются с центральным отверстием или имеют лыску (канавку) на наружной поверхности. Для облегчения удаления из глухих отверстий рекомендуется применять штифты с резьбовым отверстием (рис. 6.17, е) или резьбовым хвостовиком (рис. 6.17, (3).

Фиксация положения деталей коническими штифтами более жесткая, чем цилиндрическими. Однако при наличии в соединениях знакопеременных нагрузок и вибраций возможно выпадение под их действием конического штифта из отверстия. Для исключения этого необходимо фиксировать штифт со стороны большего основания винтом или со стороны меньшего основания гайкой, затягивающей штифт в отверстие. В первом случае в корпусе над отверстием под штифт предусматривается резьбовое отверстие под контрящий винт, а во втором штифт должен иметь со стороны меньшего диаметра резьбовой хвостовик для навинчивания гайки. Применение разводных штифтов (см. рис. 6.17, ж) также предохраняет их от выпадения из отверстия.

Конические штифты могут использоваться многократно. Цилиндрические же штифты удерживаются в отверстии за счет натяга, поэтому при многократном использовании нарушается плотность их посадки и точность установки.

Нормальный натяг в коническом штифтовом соединении может быть получен, если штифт, вставленный в отверстие без применения каких-либо инструментов, входит в него на 0,7—0,75 своей длины. Собирают штифтовое соединение с помощью молотка через подкладку или под прессом. Для облегчения разборки соединения штифт должен выступать на 1—2 мм над поверхностью детали (при сквозном отверстии).

Сборка цилиндрических и конических соединений с натягом

Неподвижные разъемные соединения широко применяются в оборудовании. К ним относятся соединения с гарантированным натягом, которые образуются при сборке путем напрессовывания одной детали на другую или при тепловом воздействии на одну из них.

Сборка напрессовыванием осуществляется при приложении к одной из деталей соединения осевой силы, под действием которой они перемещаются навстречу друг другу. При сборке цилиндрического соединения по мере увеличения поверхности соприкосновения деталей усилие запрессовки возрастает до некоторого максимума. Когда запрессовываемая деталь войдет на всю длину отверстия, дальнейшее ее продвижение происходит под действием постоянного усилия. Величина усилия зависит от скорости относительного перемещения деталей, при повышении которой оно уменьшается. Обычно эта скорость принимается в пределах до 5 мм/сек.

Номинальный натяг Δd (мм) соединения определяется как разность диаметров вала d в и отверстия d о: ::Δd = d в –d о . Однако, из-за того, что при запрессовке происходит смятие (сглаживание) микронеровностей поверхностей деталей, действительный натяг δ (мм) в соединении оказывается меньше номинального и приближенно определяется зависимостью

δ= Δd -(Н 1 +Н 2 ),

где H 1 и Н 2 — максимальная высота шероховатости сопрягаемых поверхностей соответственно первой и второй деталей, мм.

Таким образом, на качество соединения большое влияние оказывает шероховатость сопрягаемых поверхностей.

Наибольшее усилие запрессовки Р, необходимое для сборки соединения с натягом, определяется по формуле

Р = πfdlp,

где f— коэффициент трения при запрессовке между поверхностями деталей (принимается в пределах 0,1—0,22); d — номинальный диаметр поверхности сопряжения, мм; l—длина сопрягаемых поверхностей, мм; р — давление на поверхности контакта, МПа.

Значения р определяются по справочным данным или рассчитываются по известным формулам в зависимости от величины натяга, модуля упругости материала и размеров деталей.

Усилие, необходимое для распрессовки соединения, часто значительно превосходит усилие запрессовки.

По значению усилия запрессовки (выпрессовки) с коэффициентом запаса, равным 1,5—2, подбирают соответствующее оборудование. Для запрессовки небольших деталей (штифтов, втулок, заглушек и др.) пользуются ручными инструментами. При значительных усилиях запрессовки необходимы прессы (винтовые, гидравлические, пневматические, пневмогидравлические).

Перед сборкой с сопрягаемых поверхностей необходимо удалить имеющиеся заусенцы и забоины и очистить детали. Если обе сопрягаемые детали стальные, то их следует смазать машинным маслом.

Конические соединения обеспечивают по сравнению с цилиндрическими лучшее центрирование сопрягаемых деталей. Однако эти соединения очень чувствительны к несовпадению конусности у сопрягаемых поверхностей. Поэтому сборку конических соединений начинают с подбора или пригонки охватывающей детали по конусу вала, проверяя качество сопряжения «на качку», «на краску», и по их относительному положению вдоль оси вала. Наличие качания охватывающей детали указывает на несоответствие конических поверхностей вала и отверстия.

Зависимость натяга δ в конусном соединении от величины затяжки h (мм) (рис. 6.18) выражается формулой

h = δ/2tgα=(0,015+0,001d)/ 2tgα

где δ — диаметральный натяг в соединении, мм; d — средний диаметр конуса, мм; α — угол наклона образующей конической поверхности.

Замерив первоначальную, до затяжки, и конечную, после затяжки, посадку ступицы на конус вала, определяют величину h и по ней — натяг в соединении.

Рис. 6.18. Схема конического соединения

Сборка при тепловом воздействии осуществляется путем нагревания охватывающей или охлаждения охватываемой детали. Прочность таких соединений при передаче крутящего момента или осевого усилия в 3 раза больше прочности соединений, полученных обычным запрессовыванием одной детали в отверстие другой. Объясняется это тем, что при таком способе сборки неровности сопрягаемых поверхностей не сглаживаются как при запрессовывании, что увеличивает величину натяга. Тепловое воздействие применяется при сборке цилиндрических и конических соединений.

Сборка с нагреванием . Общий нагрев деталей производится в газовых, электрических печах или в жидкой среде. В качестве жидкости используются вода и минеральные масла. При повышенной температуре нагрева применяется касторовое масло. Крупногабаритные детали подвергают местному нагреву, обычно газовым пламенем. Не рекомендуется нагревать детали выше 450 °С.

Температура, до которой нагревается охватывающая деталь, определяется из условия, что увеличение диаметра ее отверстия в результате нагрева должно быть не меньше натяга, т.е. Δ= αtd 1 , где α—коэффициент линейного расширения материала охватывающей детали, 1/°С; t—температура ее нагревания, °С; d 1 —диаметр отверстия, мм; Δ— натяг в соединении, мм. При выполнении данного условия охватываемая деталь свободно входит в охватывающую.

Фактическую температуру нагрева увеличивают на 40—50 °С больше расчетного значения для компенсации частичного охлаждения детали в процессе ее установки и выверки перед сборкой.

Сборка с охлаждением . Если охватывающая деталь имеет большой вес и габариты и сложно обеспечить ее нагрев, то применяют сборку с охлаждением охватываемой детали. Применение холода целесообразно во всех случаях, когда посадочные места расположены на концах вала или близко к ним.

Охлаждение до температуры -75 °С производится при помощи твердой углекислоты, до -190 °С — жидкого азота. Жидкий азот неядовит и поэтому неопасен. Основные требования по технике безопасности сводятся к осторожному обращению с низкотемпературной жидкостью.
В качестве охлаждающей жидкости при сборке неподвижных соединений в машиностроении чаще применяется азот. Для перевозки и хранения небольшого его количества используются металлические сосуды «Дюара» с высоковакуумной изоляцией.

При использовании метода охлаждения значительно сокращается трудоемкость сборки, повышается качество неподвижных соединений за счет применения больших натягов, исключаются последующие операции после запрессовки. При сборке закаленных деталей с применением охлаждения, кроме снижения трудоемкости сборки, повышается качество самих деталей. Это достигается за счет структурных изменений в материале детали (остаточный аустенит переходит в мартенсит), что в дальнейшем стабилизирует размеры деталей и сохраняет их твердость. Заметим, что если сборка производится с нагревом, то не только охватывающая, но и охватываемая деталь теряют свою твердость.

Охлаждение применяется при установке в отверстия деталей бронзовых, стальных и чугунных втулок, а также для установки на валы полумуфт, зубчатых колес, дисков, маховиков и др. деталей.

Детали, собираемые этим методом, поступают на сборку окончательно обработанными. Время охлаждения деталей зависит от их размеров и может быть определено по номограмме (рис. 6.19) или эмпирическим зависимостям.

Рис. 6.19. Номограмма для определения времени охлаждения деталей в жидком

азоте

На номограмме для деталей типа валов и втулок изображены по две линии, устанавливающие связь между диаметром детали и временем охлаждения. Одна из линий определяет время охлаждения деталей до температуры -150 °С, а вторая до -190 °С.

Если, например, толщина стенки втулки равна 50 мм, то время ее охлаждения до температуры -150 °С составляет 6 мин, а до температуры -190 °С — 9 мин. Стальной вал радиусом 100 мм за 14 мин охладится до -150 °С, а за 22 мин — до -190 °С.

Температуру охлаждения деталей можно контролировать, наблюдая за состоянием поверхности жидкого азота. При погружении в него детали происходит бурное кипение и испарение азота. Этот процесс продолжается до тех пор, пока деталь не охладится до -150 °С. При дальнейшем охлаждении и достижении температуры детали около -160 °С азот снова закипает с образованием пены. Его кипение прекращается тогда, когда деталь охладится до температуры -190 °С. В табл. 6.1 приведены расчетные данные о расходе жидкого азота на охлаждение 1 кг металла. При охлаждении детали до -190 °С количество охлаждающего вещества увеличивается вдвое.

При определении действительного количества жидкого азота, которое потребуется залить в термостат, необходимо учитывать, что после охлаждения детали в термостате останется около 50 % азота. Поэтому надо заливать в термостат азота на 50 % больше указанного в таблице. Необходимо учитывать и естественную потерю жидкого азота за время его транспортировки от места производства до места потребления, а также потерю его за время хранения до момента применения.

При транспортировке и хранении жидкого азота в сосудах «Дюара» его потери от испарения составляют по весу 10 % в сутки. Операции по сборке неподвижных соединений с применением охлаждения выполняются в следующей последовательности.

Перед сборкой сопрягаемые поверхности деталей необходимо зачистить от забоин. Одновременно подготавливают термостат, жидкий азот и приспособления, предназначенные для подъема и перемещения детали перед охлаждением и после него. Охватывающую деталь (шестерню, корпус и др.) устанавливают на стенде для сборки или на заранее подготовленное место, а охватываемую деталь закрепляют на подъемно-транспортном устройстве так, чтобы было удобно ее опускать в термостат и в охватывающую деталь. Мелкие детали вводят в охватывающую деталь при помощи клещей.

После этого измеряют диаметр посадочной поверхности, полученный размер уменьшают на 0,05—0,15 мм в зависимости от размера и усадки охлаждаемой детали и переносят на микрометрическую скобу. Деталь опускают в термостат, выдерживают в нем, вынимают из термостата и проверяют диаметр посадочной поверхности скобой, размер которой установлен, как указано выше. При достаточной усадке скоба должна свободно проходить над посадочной поверхностью. При выполнении этого условия деталь быстро заводят в отверстие, фиксируют в требуемом положении и оставляют в нем до выравнивания температур деталей с температурой окружающей среды. Сборка массивных деталей с большим натягом производится комбинированным способом: охватывающую деталь нагревают до температуры 100—120 °С, а охватываемую охлаждают до температуры -190 °С.

4.1. Способы сборки узлов и соединений

В процессе сборки узлов важным является обеспечение соответствующей точности сборки, т.е. обеспечение требуемых сопряжений, зазоров, натягов.

Требуемую точность можно обеспечить:

· применением карт измерений сопрягаемых поверхностей;

· пригонкой;

· применением компенсаторов;

· макетной сборкой.

Карты измерений, как правило, составляются при сборке узлов, содержащих стандартные или унифицированные детали. Особенно это касается сборки сдвоенных подшипников качения, когда должна быть обеспечена минимальная разница диаметров внешних колец в пределах существующих допусков.

В этом случае должна быть обеспечена высокая точность измерений.

При использовании пригонки точность сборки достигается путем пригонки одного из заранее намеченного для этой цели звена. Все остальные звенья при этом изготавливают с допусками, экономически приемлемыми для определенных производственных условий.

Для компенсации погрешностей, полученных при обработке сопрягаемых деталей, и при их сборке во многих случаях используют компенсаторы. Компенсаторы подразделяются на неподвижные (прокладки, шайбы, кольца, слой самотвердеющей пластмассы и др.) и подвижные (клинья, втулки, пружины, эксцентрики, регулировочные винты и т.д.).

Этот способ широко используется при сборке зубчатых и червячных передач.

При сборке крупногабаритных изделий иногда используется макетная сборка. Например, при соединении штанги с большим конусом доменной печи требуется высокая плотность сопряжения поверхностей клина с конусом и штангой. В этом случае изготавливается макет соединения конуса и штанги и на нем осуществляется подгонка поверхностей клина.

На макетах осуществляется подгонка криволинейных участков трубопроводов циркуляционных смазочных систем, монтируемых в подвальных помещениях.

4.2. Сборка резьбовых соединений

Резьбовые соединения в конструкциях машин составляют 15-25 % от общего количества соединений. Сборка их в процессе монтажа оборудования (крепление крышек, полумуфт) в большинстве случаев выполняется вручную из-за отсутствия механизированного инструмента или невозможности его применения. Эти операции являются наиболее трудоемкими и в то же время требуют высокой квалификации рабочего, чтобы обеспечить необходимое усилие затяжки. Примерно 80 % энергии, расходуемой на весь процесс завинчивания, затрачивается на преодоление сил трения и около 20 % на затяжку. Поэтому необходима разработка способов, обеспечивающих значительное снижение трудозатрат на затяжку болтовых соединений, особенно при монтаже металлургических машин, где используются болты с резьбой от М10 до М400. Затяжка болтов может осуществляться двумя способами:

1) удлинение болта на величину, обеспечивающую необходимое усилие, и затем довинчивание гайки на эту величину;

2) довинчивание гайки, обеспечивающее необходимое усилие затяжки, с использованием механизированного инструмента.

На работоспособность болтового соединения решающее влияние оказывает правильно выбранное усилие затяжки.

Сила предварительной затяжки может быть найдена из выражения:

К - коэффициент, равный 0,75-1,0 и зависящий от конструктивных особенностей соединения;

E 1 , Е 2 - модуль упругости материала болта и соединяемых деталей соответственно, МПа;

F 1 , F 2 - поперечные сечения болта и детали (условного цилиндра), м².

При затяжке резьбового соединения вращением гайки необходимое усилие Р кл , приложенное к гаечному ключунарасстоянии L кл от оси вращения, можно определять из зависимости

(4.2)

где d - наружный диаметр резьбы.

Необходимая величина затяжки может быть достигнута поворотом на определенный угол j гайки после соприкосновения стыковых плоскостей соединения.

(4.3)

где L - длина болта или шпильки между опорными плоскостями, м;

S -шаг резьбы, м;

Е 1 ,E 2 - модули упругости материала соответственно болта и детали, МПа;

F 1 , F 2 - площади сечения болта и скрепляемых деталей, м².

Затяжку резьбового соединения можно также контролировать, измеряя удлинение болта

(4.4)

Напряжение растяжения в болте в этом случае не должно превышать 0,5-0,7 предела текучести материала.

При монтаже стяжных болтов (соединение станин прокатных клетей, мощных прессов и других машин), имеющих значительные диаметры резьбы, при затяжке требуются большие крутящие моменты на ключе. В ряде случаев создание таких моментов представляет значительные трудности. В распоряжении монтажных организаций имеется гидравлический ключ УБС-200, рассчитанный на затяжку болтов диаметром до 200 мм.Существует способ затяжки резьбовых соединений, основанный на растягивании болта гидроцилиндром с захватом за дополнительную гайку, установленную на болте. В этом случае основная гайка должна находиться под небольшим натягом.

После растяжения болта основная гайка должна быть повернута на угол j, рассчитанный по зависимости (4.3). Но по конструктивным или технологическим условиям часто не может быть использован гидравлический принцип растягивания болта. Тогда применяют термический способ затяжки. Требуемая сила затяжки Р заm обеспечивается удлинением болта после предварительного нагрева на величину l t =l зат.

Температура подогрева может быть определена из следующего соотношения:

где a -коэффициент линейного расширения материала болта;

L н - длина нагрева болта.

Контролируют нагрев измерением удлинения болта. После нагрева гайку поворачивают до соприкосновения с деталью.

4.3. Сборка соединений с гарантированным натягом

В металлургических машинах соединения с гарантированным натягом имеют большое распространение: соединение полумуфты с валом, подшипника качения с валом, ступицы зубчатого колеса с валом, зубчатого венца со ступицей и т.д.

По способу получения нормальных напряжений на сопрягаемых поверхностях соединения с гарантированным натягом условно делят на поперечно-прессовые и продольно-прессовые.

В поперечно-прессовых соединениях сближение сопрягаемых поверхностей происходит радиально или нормально к поверхности. Такие соединения осуществляют одним из следующих способов:

Нагреванием охватывающей делали перед сборкой;

Охлаждением охватываемой детали;

Путем пластической деформации (например, развальцовки);

Приданием упругости охватываемой детали;

При использовании материалов, обладающих "памятью" формы.

При продольно-прессовом соединении охватываемая деталь под действием прикладываемых вдоль оси сил запрессовывается в охватываемую деталь с натягом.

Сборку с нагревом охватывающей детали осуществляют тогда, когда в соединении предусмотрены значительные натяги.

Минимальная температура после нагрева для стальных деталей:

где d - диаметр отверстия, мм;

t н - начальная температура детали, °C;

a - коэффициент, равный 1,15-1,3, компенсирующий частичное охлаждение детали в процессе ее установки перед запрессовкой;

i - натяг, мм;

a - необходимый свободный зазор, мм;

«+» - нагрев;

«-» - охлаждение.

При сборке продольно-прессового соединения с гарантированным натягом наибольшая сила запрессовки P может быть найдена по формуле:

P = f зап p d L, (4.7)

где f зап - коэффициент трения при запрессовке;

Контурное давление на поверхности контакта, МПа;

d - диаметр охватываемой детали, м;

L - длина запрессовки, м.

Контурное давление на поверхности контакта можно определить по формуле:

(4.8)

где d - расчетный натяг, мкм;

Е 1 , E 2 - модули упругости охватываемой и охватывающей детали соответственно, МПа;

C 1 =0,7 - для сплошного стального вала;

C 2 - для охватывающей детали:

где D - наружный диметр охватывающей детали, м;

d - внутренний диаметр детали, м;

m 2 - коэффициент Пуассона, для стали - 0,3, чугуна - 0,25, бронзы – 0,33.

Коэффициент трения при запрессовке колеблется в широких пределах от 0,05 до 0,25 (меньшие значения со смазочным материалом).

При гидропрессовом способе с целью уменьшения усилия запрессовки на контактную поверхность между сопрягаемыми деталями подается масло под давлением, обеспечивающем разделение контактирующих поверхностей слоем смазочного материала (рис.4.1).

Рис. 4.1. Схема запрессовки путем нагнетания масла

Охватываемая деталь делается с разными посадками по длине запрессовки, чтобы обеспечить незначительный натяг в начале ее и за счет этого создать необходимое давление масла на поверхности контакта.

4.4. Сборка узлов с подшипниками качения

Основные требования, предъявляемые к собираемым узлам:

Тщательная промывка;

Точная сборка и регулировка радиальных зазоров.

От качества выполнения посадки подшипников на вал или в корпус зависят долговечность и надежность работы машины. Сборка подшипниковых узлов может осуществляться различными способами:

С помощью ручных, пневматических или гидравлических прессов;

Подогревом подшипников в горячем минеральном масле;

Охлаждением вала с применением твердой углекислоты;

Индукционным нагревом.

Работоспособность подшипников обеспечивается при точном соблюдении радиальных зазоров. На сборке, вследствие затруднения измерения радиальных зазоров, чаще всего измеряют и контролируют осевой зазор, т.е. осевое перемещение вала с напрессованным внутренним кольцом относительно внешнего кольца подшипника. Особое внимание необходимо уделять контролю осевых зазоров в регулируемых подшипниках. Регулировка осевых зазоров подшипников в узлах металлургических машин, как правило, осуществляется подбором необходимого комплекта прокладок, обеспечивающих заданный осевой зазор. Порядок регулировки следующий:

Установка торцевой крышки (рис. 4.2) до упора в торец наружного кольца подшипника и закрепление ее равномерно винтами так, чтобы выбрать осевой зазор в подшипнике (туго проворачивается вал);

Измерение щупом зазора К в нескольких местах по окружности между торцевыми поверхностями крышки и корпуса;

Определение толщины комплекта регулировочных прокладок по формуле:

где К ср - средний зазор между крышкой и торцевой поверхностью корпуса, мм;

С - осевой зазор подшипника, мм;

Установка рассчитанного комплекта регулировочных прокладок, затягивание винтов и проверка вращения вала (оно должно быть свободным).

Рис. 4.2. Регулировка конического роликоподшипника

4.5. Сборка подшипников скольжения

Сборка разъемных подшипников скольжения включает установку вкладышей в корпус и крышку, шабрение вкладышей по валу, для обеспечения диаметральных зазоров, и соответствующей поверхности контакта.

При сборке выделяют следующие группы и виды соединений: по сохранению целостности при разборке - разъемные и неразъемные; по возможности относительного перемещения составных частей - подвижные и неподвижные; по методу образования - резьбовые, прессовые, шлицевые, шпоночные, сварные, клепаные, комбинированные и др.; по форме сопрягаемых поверхностей - цилиндрические, плоские, конические, винтовые, профильные и др. Соединения, содержащие в себе несколько признаков, обозначаются соответствующим сочетанием терминов, например неподвижные разъемные резьбовые соединения, подвижные неразъемные профильные соединения.

Наиболее распространенными соединениями в конструкции автомобилей являются: разъемные подвижные (поршень - цилиндр, вал - подшипник скольжения, плунжер - гильза); зубчатые и шлицевые; разъемные неподвижные (резьбовые, прессовые и шпоночные); неразъемные неподвижные (сварные, паяные, клепаные, клееные); неразъемные подвижные - радиальные шариковые подшипники качения.

Сборка резьбовых соединений. При сборке резьбовых соединений должны быть обеспечены:

соосность осей болтов, шпилек, винтов с резьбовыми отверстиями и необходимая плотность посадки в резьбе;

отсутствие перекосов торца гайки или головки болта относительно поверхности сопрягаемой детали, так как перекос является основной причиной обрыва винтов и шпилек;

соблюдение очередности и постоянство усилий затяжки крепежных деталей в групповых резьбовых соединениях.

Последнее означает, чта затяжка гаек (болтов) производится в определенной последовательности (рис. 7.1). Их затягивают крест-накрест в несколько приемов - сначала неполным моментом, а затем окончательным, указанным в нормативно-технической документации. Контроль момента затяжки резьбовых соединений осуществляют динамометрическими ключами по степени изгиба (рис. 7.2) или кручения стержня ключа либо с помощью предельных муфт, встраиваемых в резьбозавертывающие машины (установки).

Сборка прессовых соединений. Качество сборки прессовых соединений формируется под воздействием следующих факторов: значения натяга, материала сопрягаемых деталей, геометрических размеров, формы и шероховатости поверхностей, соосности деталей и прилагаемого усилия запрессовывания, наличия смазки и др.

Применение смазочного материала уменьшает требуемое усилие запрессовки и предохраняет сопрягаемые поверхности от задиров. Качество сборки прессовых соединений определяется также точностью центрирования сопрягаемых деталей (с помощью приспособлений и оправок).

Повышение прочности неподвижных соединений с натягом в 1,5...2,5 раза обеспечивается применением сборки с термовоздействием - нагревом охватывающей и (или) охлаждением охватываемой детали. При этом образуется необходимый сборочный зазор и не требуется приложение осевой силы. Нагрев деталей осуществляется в масляных ваннах, электропечах, индукционных установках и др. Для охлаждения деталей применяют жидкий азот, сухой лед (твердую углекислоту) в смеси с ацетоном, бензином или спиртом.

Сборка соединений с подшипниками качения. При запрессовке подшипника качения размер его колец изменяется: внутреннее кольцо увеличивается, а наружное уменьшается. Эти изменения вызывают уменьшение диаметрального зазора между рабочими поверхностями колец и шариков.

Внутреннее кольцо подшипника, сопряженное с цапфой вала, должно иметь посадку с натягом, а наружное - с небольшим зазором так, чтобы кольцо имело возможность во время работы незначительно провертываться.

При установке в сборочной единице двух или нескольких подшипников необходимо уделять внимание соосности посадочных поверхностей в корпусных деталях. То же касается и шеек валов. Несоблюдение этого условия может привести к перекосам подшипников и заклиниванию шариков.

При запрессовке подшипников качения с помощью оправок необходимо, чтобы усилие запрессовки передавалось непосредственно на торец соответствующего кольца: внутреннего - при напрес-совке на вал, наружного - при запрессовке в корпус и на оба торца колец, если подшипники одновременно напрессовываются на вал и входят в корпус. Нагрев подшипников в масляной ванне до 100 °С при установке на вал заметно уменьшает осевое усилие для запрессовки. Целесообразен также нагрев корпусной детали.

Сплошной стрелкой показано направление смещения шестерен для исправления контакта. Если при этом боковой зазор получается чрезмерно большим или Малым, то необходимо сместить другую шестерню, как показано прерывистой стрелкой.

Регулировка радиального зазора в коническом роликовом подшипнике производится смещением наружного или внутреннего кольца в осевом направлении регулировочным винтом или гайкой либо путем подбора соответствующего комплекса прокладок. Контроль заданного предварительного натяга после сборки узда осуществляют по моменту, необходимому для прокручивания одной из сопряженных деталей относительно неподвижной детали при отсутствии осевого люфта в подшипниковых соединениях.

Срок службы подшипников качения зависит в значительной мере от степени предохранения их от грязи и пыли. Поэтому после сборки устанавливают прокладки, задерживающие смазку и предохраняющие подшипник от попадания в рабочую зону пыли и влаги.

Сборка зубчатых передач. Сборка цилиндрических зубчатых передач осуществляется методами полной или неполной взаимозаменяемости. Перед сборкой зубчатой пары на специальном приспособлении определяют боковой зазор между зубьями для обеспечения плавности работы пары, а при необходимости подбирают пару.

Для правильного зацепления зубчатых цилиндрических колес необходимо, чтобы оси валов лежали в одной плоскости и были параллельны. Их выверка производится регулированием положения гнезд под подшипники в корпусе. После установки зубчатые колеса проверяют по зазору, зацеплению и контакту.

При сборке конической пары редуктора заключительной операцией является регулировка зацепления путем осевого перемещения ведущей шестерни (вперед-назад) и (или) ведомого колеса (вправо-влево). Это достигается перемещением части регулировочных прокладок с одной стороны на другую. Качество зацепления оценивается размерами, формой и положением пятна контакта на зубьях (рис. 7.3), значением бокового зазора между зубьями и уровнем шума на специальных стендах, оборудованных шумоизмерительной аппаратурой.

Контроль качества сборки

В процессе узловой и общей сборки выполняют комплекс контрольных операций - проверок:

комплектности деталей и сборочных единиц;

точности посадок и взаимного расположения сопряженных деталей и сборочных единиц;

использования одноименных размерных групп сопряженных деталей при сборке методом групповой взаимозаменяемости;

выполнения технологических требований по сборке, регулировке, приработке и испытанию изделий;

герметичности соединений, в том числе качества притирки клапанов;

отсутствия прокладок и сальников, бывших в эксплуатации;

смазки деталей сборочных единиц.

Производится проверка технологических параметров и определение функциональных показателей собранных изделий (развиваемая мощность и удельный расход топлива, напор и подача масляного насоса, электрические параметры генератора и др.).

Контроль сборки осуществляется с применением соответствующих средств измерений, которые выбирают с учетом конструктивных особенностей изделия, метрологических характеристик, а также себестоимости выполнения контрольной операции. В качестве средств измерения используют универсальные штангенинст-рументы, микрометрические и индикаторные инструменты, электрические и пневматические приборы и различные специальные контрольные приборы, приспособления, стенды и установки. Обеспечение требуемого уровня качества отремонтированных изделий невозможно без эффективного функционирования службы технического контроля как неотъемлемой составной части технологических процессов.

В зависимости от стабильности соблюдения качества собранных изделий применяется выборочный или сплошной контроль. Операции технического контроля разрабатываются совместно с операциями технологического процесса сборки изделий, которые формируют и определяют заданное качество, а также обеспечивают получение информации для регулирования технологического процесса и предупреждения брака.

Погрешности сборки по характеру и проявлению могут быть случайными и периодическими. Основные из них - это некачественные посадки, вызывающие появление других неисправностей. Распространенными дефектами являются отклонения от точности взаимного расположения деталей и узлов, неравномерная и беспорядочная затяжка групп резьбовых соединений, неплотность прилегания сопрягаемых поверхностей и др.

Большинство погрешностей сборки возникает из-за низкого качества деталей и узлов, поступающих на сборку, и нарушения технологической дисциплины.