Все о стройке и ремонте

Вольтметр из светодиодов схема. Простой псвевдо аналоговый LED вольтметр

Практически вся техника, которую выпускают в наши дни, содержит в себе светодиоды. Они буквально окружают нас со всех сторон, начиная от ламп и фонариков, заканчивая определением напряжения буквально во всей бытовой технике. Их часто используют для подсветки экранов, управления различными приборами и т.д.
Чаще всего в технике используются светодиоды пяти цветов:

  • белые,
  • красные,
  • зеленые,
  • желтые,
  • синие.

Так же они могут создавать инфракрасное и ультрафиолетовое излучение. Именно такие незаменимы в системах управления: пульты для телевизоров, кондиционеров и другой бытовой техники.
Мы рассмотрим способ применения светодиодов в определении напряжения устройств. Основной прибор для измерения напряжения – вольтметр. Как же тут могут пригодиться светодиоды? Они и станут нашими видимыми индикаторами.
Обычно, как образец приводят пример вольтметра на основе 12 светодиодов. Соответственно он может индексировать напряжение в диапазоне от 0 до 12 вольт. Такое устройство можно весьма эффективно использовать для измерения блоков питания, которые можно регулировать. Незаменимым он будет так же для радиолюбителей, в частности для создания небольших приборов дома.

Светодиоды – индикаторы

Использование светодиода в качестве индикатора тоже имеет свои законы, которые нужно знать, если вы собираете прибор своими руками.

  • Важно соблюдать полярность. Светодиод – полупроводниковый прибор, который имеет два вывода: катод и анод. Работать он будет только в случае прямого включения.
  • Граница напряжения. Для каждого светодиода она своя. Если превысить это значение – он сломается.
  • Как индикаторы рекомендуется применять светодиоды, которые достаточно ярко горят при напряжении 5 мА.


Вольтметры на светодиодах

Если погрешность вольтметра составляет не более 4%, то его можно смело назвать индикатором. Такое устройство можно легко сделать своими руками при помощи светодиодов. Вы сможете использовать такой вольтметр для индикации микросхем под напряжением 5 вольт. Индикаторами будут 6 светодиодов в границах 1,2 – 4,2 вольт с промежутком через 0,6 вольт. Светодиоды должны потреблять 60 микроампер.
Принцип работы индикатора основан на фиксации падения напряжения в переходах: база – эмиттер транзисторов и прямых падений на диодах (0,6 вольт).
Схему такого вольтметра легко найти в интернете.

Как собрать вольтметр для аккумулятора автомобиля?

Этот вольтметр можно использовать как для 12-вольтного аккумулятора, так и для зарядных устройств, либо вообще самостоятельно.
Индикатор будет состоять из 10 светодиодов с разницей значения в четверть вольт. Измерение напряжения будет в диапазоне 10,25 – 15 вольт.
Питание осуществляется от напряжения, которые вы будете измерять.
Основой схемы такого вольтметра являются две поликомпараторные микросхемы с линейным законом индикации.
Микросхема – это набор из 10 компараторов и резисторов, которые образуют делитель напряжения. У компаратов на выходе есть ключевые каскады для того, чтобы управлять светодиодами. Для того, чтобы микросхемы работали последовательно, резисторные делители включены именно в таком (последовательном) порядке.
Светодиоды устанавливаем в одну линию. Вы можете взять как светодиодные линейки, так и 10 отдельных светодиодов. Для вольтметра подойдут светодиоды любого типа.

Старый добрый способ .

Вольтметр, установленный на панель приборов автомобиля, позволяет оперативно контролировать уровень напряжения в его бортовой сети. От такого прибора не требуется высокой разрешающей способности, зато необходима возможность легкой и быстрой определения показаний. Наилучшим образом этим условиям отвечает дискретный светодиодный индикатор напряжения. Подобные устройства получили весьма широкое распространение и для оценки уровня напряжения и мощности. Реализуют их, как правило, двумя способами.

Первый, суть его в том, что линейку светодиодов подключают к источнику измеряемого напряжения через много выходной резистивный делитель напряжения. Здесь использованы пороговые свойства светодиодов, транзисторов и диодов. За простоту такого индикатора приходится расплачиваться нечетким порогом зажигания светодиодов. Подобные устройства в свое время продавались в виде радио конструктора.

Второй способ - применение для включения каждого светодиода отдельного компаратора, сравнивающего часть входного сигнала с образцовым. Вследствие высокого коэффициента усиления компараторов, чаще всего выполняемых на ОУ, пороги включения и выключения очень четкие, но для индикатора требуется много микросхем. Счетверенные ОУ сейчас еще дороги, а одна такая микросхема может управлять только четырьмя светодиодами.

Вольтметр, предлагаемый вашему вниманию, оптимизирован в свете сказанного выше - в нем четкие пороговые уровни зажигания светодиодов получены с помощью минимума дешевых, экономичных и широкодоступных элементов. В основу принципа работы прибора положены пороговые свойства цифровой микросхемы.

Прибор (см. схему на рис. 1) представляет собой шестиуровневый индикатор. Для удобства применения в автомобиле интервал измерения выбран равным 10...15 В с шагом в 1 В. И интервал, и шаг могут быть легко изменены.

Пороговыми устройствами служат шесть инверторов DD1,1-DD1.6, каждый из которых представляет собой нелинейный усилитель напряжения с большим коэффициентом усиления. Пороговый уровень переключения инверторов - примерно половина напряжения питания микросхемы, поэтому они как бы сравнивают напряжение на входе с половиной напряжения питания.

Если входное напряжение инвертора превысит пороговый уровень, на его выходе появится напряжение низкого уровня. Поэтому светодиод, служащий нагрузкой инвертора, включится выходным (втекающим) током. Когда же на выходе инверторов высокий уровень, светодиоды закрыты и выключены.

С выходов резистивного делителя R1-R7 на вход инверторов поступает соответствующая доля напряжения бортовой сети. При изменении бортового напряжения пропорционально изменяются и его доли. Напряжение же питания инверторов и светодиодной линейки стабилизировано микросхема стабилизатором DA1. Номиналы резисторов R1-R7 рассчитывают таким образом., чтобы получить шаг переключения, равный 1 В.

Конденсатор С2 совместно с резистором R1 образуют низкочастотный фильтр, подавляющий кратковременные всплески напряжения, которые могут возникнуть, например, при пуске двигателя. Конденсатор С1 изготовитель микросхемных стабилизаторов рекомендует устанавливать для улучшения их устойчивости на высокой частоте. Резисторы R8-R13 ограничивают выходной ток инверторов.

Как рассчитать резисторы R1-R7? Несмотря на то, что на входе инверторов DD1.1.-D1.6 установлены полевые транзисторы, которые входного тока практически не потребляют, существует так называемый ток утечки. Это заставляет выбирать ток через делитель намного большим суммарного тока утечки всех шести инверторов (не более 6X10-5 мкА). Минимальным ток через делитель будет при минимальном индуцируемом напряжении 10 В.

Зададим этот ток равным 100 мкА, что примерно в миллион раз больше тока утечки. Тогда общее сопротивление делителя RД=R1+R2+RЗ+R4+R5+R6+R7 (в килоомах, если напряжение в вольтах, а ток - в миллиамперах) должно быть равно: Rд=Uвx min/Imin = 10В/0,1мА = 100кОм.

Теперь рассчитаем сопротивление каждого из резисторов при условии Uпор=Uпит/2, т. е. в рассматриваемом случае Uпор=3 В. При входном напряжении 15 В на резисторе R7 должно падать 3 В, а ток через него (равный току через весь делитель) Iд=UBX/Rд=15 В/100 кОм= 0,15 мА=150 мкА, Тогда сопротивление резистора R7: R=Uпоp/Iд; R7=3 В/0,15 мА=20кОм.

На входе инвертора DD1.5 3 В должно быть при входном напряжении 14 В. Ток через делитель в этом случае Iд=14 В/100 кОм=0,14 мА. Тогда суммарное сопротивление R6+R7=Uпоp/Iд=3/0,14-21,5 кОм.

Отсюда R6=21,5-20=1,5 кОм.

Аналогично определяют сопротивление остальных резисторов делителя: R5=UпорхRд/Uвх-(R6+R7)-1,6 кОм; R4-2 кОм, RЗ-2,2 кОм, R2-2.7 кОм и, наконец, R1=Rд-(R2+RЗ+R4+R5+R6+R7) = 70 кОм-68 кОм.

Вообще, как известно, пороговое напряжение элементов микросхем КМОП находится в пределах от 1/3Uпит до 2/3Uпит. Известно также, что изготовленные в едином технологическом цикле на одном кристалле элементы одной микросхемы имеют практически одинаковые значения порога переключения. Поэтому для точной установки "начала шкалы" вольтметра достаточно резистор R1 заменить последовательной цепью из подстроечного с рассчитанным номиналом и постоянного с номиналом в два раза меньше расчетного.

Температурная стабильность прибора весьма высока. При изменении температуры от -10 до +60 °С порог срабатывания изменяется на несколько сотых долей вольта. Микросхемный стабилизатор DА1 также обладает температурной стабильностью не хуже 30 мВ в пределах 0...100 °С.

Выходное напряжение стабилизатора DА1 не должно быть меньше 6 В, иначе инверторы не смогут обеспечить необходимый ток через светодиоды. Инверторы микросхемы К561ЛН2 допускают выходной ток до 8 мА. Светодиоды АЛ307БМ можно заменить любыми другими, пересчитав номиналы ток-ограничивающих резисторов R8-R13. Конденсаторы так же могут быть любыми на номинальное напряжение не менее 10 В.

Для налаживания собранное устройство подключают к выходу регулируемого источника напряжения, который будет имитировать бортовую сеть. Установив выходное напряжение источника 10 В, а сопротивление подстроечного резистора на максимум, вращают его движок до момента включения светодиода HL1. Остальные уровни устанавливаются автоматически.

Детали вольтметра смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1 мм. Чертеж платы представлен на рис. 2. Она рассчитана на установку подстроечного резистора СПЗ-33, а остальных - МЛТ-0,125, конденсатора С1 - KM, С2 - К50-35.



Плата прикреплена ко дну коробки из пластика двумя винтами М2,5 на трубчатых стойках и еще одним таким же, который одновременно прижимает к плате микросхему DA1. Отметим, что эта микросхема установлена пластмассовой (а не металлической) гранью к плате. Между корпусом микросхемы и платой также установлена трубчатая стойка, но укороченная.

Выводы светодиодов перед монтажом изгибают на 90 град, с тем, чтобы их оптические оси были параллельны плоскости платы. Корпусы светодиодов должны выступать за край платы и при окончательной сборке устройства выходить в отверстия, просверленные в торце коробки.

Устойчивость работы стабилизатора и всего устройства в целом будет еще выше, если к входу микросхемы (между выв. 8 и 17) подключить конденсатор емкостью 0,1 мк. Для того чтобы обезопасить стабилизатор от случайных всплесков напряжения в бортовой сети, амплитуда которых может достигать 80 - 00 В. параллельно этому конденсатору следует подключить еще один - оксидный. Он должен иметь емкость не менее 1000 мкФ и номинальное напряжение 25 В. Этот конденсатор благоприяпто скажется и на работе радиоприемной и звукоусилитель автомобильной аппаратуры.

Литература

Рассмотрены не сложные схемы цифровых вольтметра и амперметра, построенных без использования микроконтроллеров на микросхемах СА3162, КР514ИД2. Обычно, у хорошего лабораторного блока питания есть встроенные приборы, - вольтметр и амперметр. Вольтметр позволяет точно установить выходное напряжение, а амперметр покажет ток через нагрузку.

В старых лабораторных блоках питания были стрелочные индикаторы, но сейчас должны быть цифровые. Сейчас радиолюбители чаще всего делают такие приборы на основе микроконтроллера или микросхем АЦП вроде КР572ПВ2, КР572ПВ5.

Микросхема СА3162Е

Но существуют и другие микросхемы аналогичного действия. Например, есть микросхема СА3162Е, которая предназначена для создания измерителя аналоговой величины с отображением результата на трехразрядном цифровом индикаторе.

Микросхема СА3162Е представляет собой АЦП с максимальным входным напряжением 999 mV (при этом показания «999») и логической схемой, которая выдает сведения о результате измерения в виде трех поочередно меняющихся двоично-десятичных четырехразрядных кодов на параллельном выходе и трех выходах для опроса разрядов схемы динамической индикации.

Чтобы получить законченный прибор нужно добавить дешифратор для работы на семисегментный индикатор и сборку из трех семисегментных индикаторов, включенных в матрицу для динамической индикации, а так же, трех управляющих ключей.

Тип индикаторов может быть любым, -светодиодные, люминесцентные, газоразрядные, жидкокристаллические, все зависит от схемы выходного узла на дешифраторе и ключах. Здесь используется светодиодная индикация на табло из трех семисегментных индикаторов с общими анодами.

Индикаторые включены по схеме динамической матрицы, то есть, все их сегментные (катодные) выводы включены параллельно. А для опроса, то есть, последовательного переключения, используются общие анодные выводы.

Принципиальная схема вольтметра

Теперь ближе к схеме. На рисунке 1 показана схема вольтметра, измеряющего напряжение от 0 до 100V (0...99,9V). Измеряемое напряжение поступает на выводы 11-10 (вход) микросхемы D1 через делитель на резисторах R1-R3.

Конденсатор СЗ исключает влияние помех на результат измерения. Резистором R4 устанавливают показания прибора на ноль, при отсутствии входного напряжения А резистором R5 выставляют предел измерения так чтобы результат измерения соответствовал реальному, то есть, можно сказать, им калибруют прибор.

Рис. 1. Принципиальная схема цифрового вольтметра до 100В на микросхемах СА3162, КР514ИД2.

Теперь о выходах микросхемы. Логическая часть СА3162Е построена по логике ТТЛ, а выходы еще и с открытыми коллекторами. На выходах «1-2-4-8» формируется двоичнодесятичный код, который периодически сменяется, обеспечивая последовательную передачу данных о трех разрядах результата измерения.

Если используется дешифратор ТТЛ, как, например, КР514ИД2, то его входы непосредственно подключаются к данным входам D1. Если же будет применен дешифратор логики КМОП или МОП, то его входы будет необходимо подтянуть к плюсу при помощи резисторов. Это нужно будет сделать, например, если вместо КР514ИД2 будет использован дешифратор К176ИД2 или CD4056.

Выходы дешифратора D2 через токоограничивающие резисторы R7-R13 подключены к сегментным выводам светодиодных индикаторов Н1-НЗ. Одноименные сегментные выводы всех трех индикаторов соединены вместе. Для опроса индикаторов используются транзисторные ключи VT1-VT3, на базы которых подаются команды с выходов Н1-НЗ микросхемы D1.

Эти выводы тоже сделаны по схеме с открытым коллектором. Активный ноль, поэтому используются транзисторы структуры р-п-р.

Принципиальная схема амперметра

Схема амперметра показана на рисунке 2. Схема практически такая же, за исключением входа. Здесь вместо делителя стоит шунт на пятиваттном резисторе R2 сопротивлением 0,1 От. При таком шунте прибор измеряет ток до 10А (0...9.99А). Установка на ноль и калибровка, как и в первой схеме, осуществляется резисторами R4 и R5.

Рис. 2. Принципиальная схема цифрового амперметра до 10А и более на микросхемах СА3162, КР514ИД2.

Выбрав другие делители и шунты можно задать другие пределы измерения, например, 0...9.99V, 0...999mA, 0...999V, 0...99.9А, это зависит от выходных параметров того лабораторного блока питания, в который будут установлены эти индикаторы. Так же, на основе данных схем можно сделать и самостоятельный измерительный прибор для измерения напряжения и тока (настольный мультиметр).

При этом нужно учесть, что даже используя жидкокристаллические индикаторы прибор будет потреблять существенный ток, так как логическая часть СА3162Е построена по ТТЛ-логике. Поэтому, хороший прибор с автономным питанием вряд ли получится. А вот автомобильный вольтметр (рис.4) выйдет неплохой.

Питаются приборы постоянным стабилизированным напряжением 5V. В источнике питания, в который будут они установлены, необходимо предусмотреть наличие такого напряжения при токе не ниже 150mA.

Подключение прибора

На рисунке 3 показана схема подключения измерителей в лабораторном источнике.

Рис. 3. Схема подключения измерителей в лабораторном источнике.

Рис.4. Самодельный автомобильный вольтметр на микросхемах.

Детали

Пожалуй, самое труднодоставаемое - это микросхемы СА3162Е. Из аналогов мне известна только NTE2054. Возможно есть и другие аналоги, о которых мне не известно.

С остальным значительно проще. Как уже сказано, выходную схему можно сделать на любом дешифраторе и соответствующих индикаторах. Например, если индикаторы будут с общим катодом, то нужно КР514ИД2 заменить на КР514ИД1 (цоколевка такая же), а транзисторы VТ1-VТЗ перетащить вниз, подсоединив их коллектора к минусу питания, а эмиттеры к общим катодам индикаторов. Можно использовать дешифраторы КМОП-логики, подтянув их входы к плюсу питания при помощи резисторов.

Налаживание

В общем-то оно совсем несложное. Начнем с вольтметра. Сначала замкнем между собой выводы 10 и 11 D1, и подстройкой R4 выставим нулевые показания. Затем, убираем перемычку, замыкающую выводы 11-10 и подключаем к клеммам «нагрузка» образцовый прибор, например, мультиметр.

Регулируя напряжение на выходе источника, резистором R5 настраиваем калибровку прибора так, чтобы его показания совпадали с показаниями мультиметра. Далее, налаживаем амперметр. Сначала, не подключая нагрузку, регулировкой резистора R5 устанавливаем его показания на ноль. Теперь потребуется постоянный резистор сопротивлением 20 От и мощностью не ниже 5W.

Устанавливаем на блоке питания напряжение 10V и подключаем этот резистор в качестве нагрузки. Подстраиваем R5 так чтобы амперметр показал 0,50 А.

Можно выполнить калибровку и по образцовому амперметру, но мне показалось удобнее с резистором, хотя конечно на качество калибровки очень влияет погрешность сопротивления резистора.

По этой же схеме можно сделать и автомобильный вольтметр. Схема такого прибора показана на рисунке 4. Схема от показанной на рисунке 1 отличается только входом и схемой питания. Этот прибор теперь питается от измеряемого напряжения, то есть, измеряет напряжение, поступающее на него как питающее.

Напряжение от бортовой сети автомобиля через делитель R1-R2-R3 поступает на вход микросхемы D1. Параметры этого делителя такие же как в схеме на рисунке 1, то есть для измерения в пределах 0...99.9V.

Но в автомобиле напряжение редко бывает более 18V (больше 14,5V уже неисправность). И редко опускается ниже 6V, разве только падает до нуля при полном отключении. Поэтому прибор реально работает в интервале 7...16V. Питание 5V формируется из того же источника, с помощью стабилизатора А1.

Встала задача определения состояния аккумуляторной батареи во время разряда, хранения ее и заряда, пришлось вспомнить навыки и взяться за паяльник. Все схемы с кучей компараторов и прочими ухищрениями своим размером навевали тоску - проще было мультиметр привязать к аккумулятору. Поэтому решено было придумать что-нибудь простое и элегантное, в результате родилась схема, которую можно масштабировать под свои нужды как в ширину, так и в глубину. На один шаг напряжения используются всего три элемента - стабилитрон, резистор и светодиод (на этом месте хлопни себя по лбу и воскликни: "Как я раньше не додумался!"

В общем лови схему и фото готового устройства из расчета на одну 12 Вольтовую свинцовую кислотную аккумуляторную батарею как в UPSах и автомобилях. Индикация от совсем разряжено (напряжение меньше 9,5В) до полностью заряжено (напряжение больше 14,6В). Если надо другие диапазоны или шкалу хочется шире, то берем ближайший стабилитрон по напряжению и считаем токоограничительный резистор для светодиода. (1,5В падение, 20мА ток).
В общем все просто.




Если использовать SMD компоненты, то можно уложиться в эту десятикопеечную монету, ну у меня задачи миниатюризации не стояло, потому собрал на макетке.

Первый красный светодиод показывает, что схема подключена и какое-то напряжение есть. второй - больше 9 Вольт, третий, желтый, - больше 10В, четвертый - больше 11В, пятый, зеленый, - больше 12В и шестой - больше 13В. Градации между этими точками прекрасно видны по степени свечения соответствующих светодиодов. В данном случае аккумулятор стоит на заряде и вот-вот будет заряжен.