Все о стройке и ремонте

А решать графически уравнение. Графическое решение уравнений

Презентация и урок на тему: "Графическое решение квадратных уравнений"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Степени и корни Функции и графики

Графики квадратичных функций

На прошлом уроке мы научились строить график любой квадратичной функции. С помощью таких функций мы можем решать, так называемые, квадратные уравнения, которые в общем виде записываются следующим образом: $ax^2+bx+c=0$,
$a, b, c$ - любые числа, но $a≠0$.
Ребята, сравните уравнение, записанное выше и это: $y=ax^2+bx+c$.
Они практически идентичны. Отличие в том, что вместо $y$ мы записали $0$, т.е. $y=0$. Как же тогда решить квадратные уравнения? Первое, что приходит на ум, надо построить график параболы $ax^2+bx+c$ и найти точки пересечения этого графика с прямой $y=0$. Существуют и другие способы решения. Рассмотрим их на конкретном примере.

Способы решения квадратичных функций

Пример.
Решить уравнение: $x^2+2x-8=0$.

Решение.
Способ 1. Построим график функции $y=x^2+2x-8$ и найдем точки пересечения с прямой $y=0$. Коэффициент при старшей степени положителен, значит ветви параболы смотрят вверх. Найдем координаты вершины:
$x_{в}=-\frac{b}{2a}=\frac{-2}{2}=-1$.
$y_{в}=(-1)^2+2*(-1)-8=1-2-8=-9$.

Точку с координатами $(-1;-9)$ примем за начало новой системы координат и построим в ней график параболы $y=x^2$.

Мы видим две точки пересечения. Они отмечены черными точками на графике. Мы решаем уравнение относительно х, поэтому надо выбрать абсциссы этих точек. Они равны $-4$ и $2$.
Таким образом, решением квадратного уравнения $x^2+2x-8=0$ являются два корня:$ x_1=-4$ и $x_2=2$.

Способ 2. Преобразуем исходное уравнение к виду: $x^2=8-2x$.
Таким образом мы можем решить это уравнение обычным графическим способом, найдя абсциссы точек пересечения двух графиков $y=x^2$ и $y=8-2x$.
Получили две точки пересечения, абсциссы которых совпадают с полученными в первом способе решениями, а именно: $x_1=-4$ и $x_2=2$.

Способ 3.
Преобразуем исходное уравнение к такому виду: $x^2-8=-2x$.
Построим два графика $y=x^2-8$ и $y=-2x$ и найдем их точки пересечения.
Графиком $y=x^2-8$ является парабола, смещенная на 8 единиц вниз.
Получили две точки пересечения, причем абсциссы этих точек такие же, как и в двух предыдущих способах, а именно: $x_1=-4$ и $x_2=2$.

Способ 4.
Выделим полный квадрат в исходном уравнении: $x^2+2x-8=x^2+2x+1-9=(x+1)^2-9$.
Построим два графика функций $y=(x+1)^2$ и $y=9$. Графиком первой функции является парабола, смещенная на одну единицу влево. График второй функции – это прямая, параллельная оси абсцисс и проходящая через ординату равную $9$.
В очередной раз получили две точки пересечения графиков, причем абсциссы этих точек совпадают с полученными в предыдущих способах $x_1=-4$ и $x_2=2$.

Способ 5.
Разделим исходное уравнение на х: $\frac{x^2}{x}+\frac{2x}{x}-\frac{8}{x}=\frac{0}{x}$.
$x+2-\frac{8}{x}=0$.
$x+2=\frac{8}{x}$.
Решим это уравнение графически, построим два графика $y=x+2$ и $y=\frac{8}{x}$.
Опять получили две точки пересечения, причем абсциссы этих точек совпадают с полученными выше $x_1=-4$ и $x_2=2$.

Алгоритм графического решения квадратичных функций

Ребята, мы рассмотрели пять способов графического решения квадратных уравнений. В каждом из этих способов корни уравнений получились одинаковыми, что значит решение получено верное.

Основные способы графического решения квадратных уравнений $ax^2+bx+c=0$, $a, b, c$ - любые числа, но $a≠0$:
1. Построить график функции $y=ax^2+bx+c$, найти точки пересечения с осью абсцисс, которые и будут решением уравнения.
2. Построить два графика $y=ax^2$ и $y=-bx-c$, найти абсциссы точек пересечения этих графиков.
3. Построить два графика $y=ax^2+c$ и $y=-bx$, найти абсциссы точек пересечения этих графиков. Графиком первой функции будет парабола, смещенная либо вниз либо вверх, в зависимости от знака числа с. Второй график – прямая, проходящая через начало координат.
4. Выделить полный квадрат, то есть привести исходное уравнение к виду: $a(x+l)^2+m=0$.
Построить два графика функции $y=a(x+l)^2$ и $y=-m$, найти их точки пересечения. Графиком первой функции будет парабола, смещенная либо влево, либо вправо, в зависимости от знака числа $l$. Графиком второй функции будет прямая, параллельная оси абсцисс и пересекающая ось ординат в точке равной $-m$.
5. Разделить исходное уравнение на х: $ax+b+\frac{c}{x}=0$.
Преобразовать к виду: $\frac{c}{x}=-ax-b$.
Опять построить два графика и найти точки их пересечения. Первый график – гипербола, второй график – прямая. К сожалению, графический метод решения квадратных уравнений не всегда является хорошим способом решения. Точки пересечения различных графиков не всегда являются целыми числами или могут иметь в абсциссе (ординате) очень большие числа, которые не построить на обычном листе бумаги.

Более наглядно продемонстрируем все эти способы на примере.

Пример.
Решить уравнение: $x^2+3x-12=0$,

Решение.
Построим график параболы и найдем координаты вершин: $x_{в}=-\frac{b}{2a}=\frac{-3}{2}=-1,5$.
$y_{в}=(-1,5)^2+2*(-1,5)-8=2,25-3-8=-8,75$.
При построении такой параболы сразу возникают проблемы, например, чтобы правильно отметить вершину параболы. Для того, чтобы точно отметить ординату вершины нужно выбрать одну клеточку, равную 0,25 единиц масштаба. При таком масштабе нужно спуститься на 35 единиц вниз, что неудобно. Все таки построим наш график.
Вторая проблема с которой мы сталкиваемся, это то, что график нашей функции пересекает ось абсцисс в точке с координатами, которые точно определить невозможно. Возможно приблизительное решение, но математика - это точная наука.
Таким образом, графический метод оказывается не самым удобным. Поэтому для решений квадратных уравнений требуется более универсальный метод, который мы изучим на следующих уроках.

Задачи для самостоятельного решения

1. Решить уравнение графически (всеми пятью способами): $x^2+4x-12=0$.
2. Решить уравнение любым графическим способом: $-x^2+6x+16=0$.

Если Вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи – решайте их.

Д. Пойа

Уравнение – это равенство, содержащее одно или несколько неизвестных, при условии, что ставится задача нахождения тех значений неизвестных, для которых оно истинно.

Решить уравнение – это значит найти все значения неизвестных, при которых оно обращается в верное числовое равенство, или установить, что таких значений нет.

Область допустимы значений уравнения (О.Д.З.) – это множество всех тех значений переменной (переменных), при которых определены все выражения, входящие в уравнение.

Многие уравнения, представленные в ЕГЭ, решаются стандартными методами. Но никто не запрещает использовать что-то необычное, даже в самых простых случаях.

Так, например, рассмотрим уравнение 3 x 2 = 6 / (2 – x) .

Решим его графически , а затем найдем увеличенное в шесть раз среднее арифметическое его корней.

Для этого рассмотрим функции y = 3 x 2 и y = 6 / (2 – x) и построим их графики.

Функция y = 3 – x 2 – квадратичная.

Перепишем данную функцию в виде y = -x 2 + 3. Ее графиком является парабола, ветви которой направлены вниз (т.к. a = -1 < 0).

Вершина параболы будет смещена по оси ординат на 3 единицы вверх. Таким образом, координата вершины (0; 3).

Чтобы найти координаты точек пересечения параболы с осью абсцисс, приравняем данную функцию к нулю и решим полученное уравнение:

Таким образом, в точках с координатами (√3; 0) и (-√3; 0) парабола пересекает ось абсцисс (рис. 1).

Графиком функции y = 6 / (2 – x) является гипербола.

График этой функции можно построить с помощью следующих преобразований:

1) y = 6 / x – обратная пропорциональность. График функции – гипербола. Ее можно построить по точкам, для этого составим таблицу значений для x и y:

x | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |

y | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |

2) y = 6 / (-x) – график функции, полученной в пункте 1, симметрично отображаем относительно оси ординат (рис. 3).

3) y = 6 / (-x + 2) – сдвигаем график, полученный в пункте 2, по оси абсцисс на две единицы вправо (рис. 4).

Теперь изобразим графики функций y = 3 x 2 и y = 6 / (2 – x) в одной системе координат (рис. 5).

По рисунку видно, что графики пересекаются в трех точках.

Важно понимать, что графический способ решения не позволяет найти точное значение корня. Итак, числа -1; 0; 3 (абсциссы точек пересечения графиков функций) являются пока только предполагаемыми корнями уравнения.

С помощью проверки убедимся, что числа -1; 0; 3 – действительно корни исходного уравнения:

Корень -1:

3 – 1 = 6 / (2 (-1));

3 – 0 = 6 / (2 0);

3 – 9 = 6 / (2 3);

Их среднее арифметическое:

(-1 + 0 + 3) / 3 = 2/3.

Увеличим его в шесть раз: 6 · 2/3 = 4.

Данное уравнение, конечно же, можно решить и более привычным способом – алгебраическим .

Итак, найти увеличенное в шесть раз среднее арифметическое корней уравнения 3 x 2 = 6 / (2 – x).

Начнем решение уравнения с поиска О.Д.З. В знаменателе дроби не должен получаться нуль, поэтому:

Чтобы решить уравнение, воспользуемся основным свойством пропорции, это позволит избавиться от дроби.

(3 x 2)(2 – x) = 6.

Раскроем скобки и приведем подобные слагаемые:

6 – 3x 2x 2 + x 3 = 6;

x 3 2x 2 – 3x = 0.

Вынесем общий множитель за скобки:

x(x 2 2x – 3) = 0.

Воспользуемся тем, что произведение равно нулю только тогда, когда хотя бы один из множителей равен нулю, поэтому имеем:

x = 0 или x 2 2x – 3 = 0.

Решим второе уравнение.

x 2 2x – 3 = 0. Оно квадратное, поэтому воспользуемся дискриминантом.

D = 4 4 · (-3) = 16;

x 1 = (2 + 4) / 2 = 3;

x 2 = (2 4) / 2 = -1.

Все три полученных корня удовлетворяют О.Д.З.

Поэтому найдем их среднее арифметическое и увеличим его в шесть раз:

6 · (-1 + 3 + 0) / 3 = 4.

На самом деле, графический способ решения уравнений применяется довольно редко. Это связано с тем, что графическое представление функций позволяет решать уравнения только приближенно. В основном этот метод используют в тех задачах, где важен поиск не самих корней уравнения – их численных значений, а только их количества.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Графическое решение уравнений

Расцвет, 2009

Введение

Необходимость решать квадратные уравнения еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения вавилоняне умели решать еще около 2000 лет до н.э. Правило решения этих уравнений, изложенное в Вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила.

Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Его книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы.

Но общее правило решения квадратных уравнений, при всевозможных комбинациях коэффициентов b и c было сформулировано в Европе лишь в 1544 году М. Штифелем.

В 1591 году Франсуа Виет ввел формулы для решения квадратных уравнений.

В древнем Вавилоне могли решить некоторые виды квадратных уравнений.

Диофант Александрийский и Евклид , Аль-Хорезми и Омар Хайям решали уравнения геометрическими и графическими способами.

В 7 классе мы изучали функции у = С, у = kx , у = kx + m , у = x 2 , у = – x 2 , в 8 классе – у = √ x , у = |x |, у = ax 2 + bx + c , у = k / x . В учебнике алгебры 9 класса я увидела ещё не известные мне функции: у = x 3 , у = x 4 , у = x 2 n , у = x - 2 n , у = 3 √x , ( x a ) 2 + (у – b ) 2 = r 2 и другие. Существуют правила построения графиков данных функций. Мне стало интересно, есть ли ещё функции, подчиняющиеся этим правилам.

Моя работа заключается в исследовании графиков функций и графическом решении уравнений.

1. Какие бывают функции

График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции.

Линейная функция задаётся уравнением у = kx + b , гдеk и b – некоторые числа. Графиком этой функции является прямая.

Функция обратной пропорциональности у = k / x , где k¹ 0. График этой функции называется гиперболой.

Функция ( x a ) 2 + (у – b ) 2 = r 2 , где а , b и r – некоторые числа. Графиком этой функции является окружность радиуса r с центром в т. А (а , b ).

Квадратичная функция y = ax 2 + bx + c где а, b , с – некоторые числа и а ¹ 0. Графиком этой функции является парабола.

Уравнение у 2 ( a x ) = x 2 ( a + x ) . Графиком этого уравнения будет кривая, называемая строфоидой.

Уравнение ( x 2 + y 2 ) 2 = a ( x 2 y 2 ) . График этого уравнения называется лемнискатой Бернулли.

Уравнение. График этого уравнения называется астроидой.

Кривая(x 2 y 2 – 2 a x) 2 =4 a 2 (x 2 + y 2) . Эта кривая называется кардиоидой.

Функции: у = x 3 – кубическая парабола, у = x 4 , у = 1/ x 2 .

2. Понятие уравнения, его графического решения

Уравнение – выражение, содержащее переменную.

Решить уравнение – это значит найти все его корни, или доказать, что их нет.

Корень уравнения – это число, при подстановке которого в уравнение получается верное числовое равенство.

Решение уравнений графическим способом позволяет найти точное или приближенное значение корней, позволяет найти количество корней уравнения.

При построении графиков и решении уравнений используются свойства функции, поэтому метод чаще называют функционально-графическим.

Для решения уравнение «делим» на две части, вводим две функции, строим их графики, находим координаты точек пересечения графиков. Абсциссы этих точек и есть корни уравнения.

3. Алгоритм построения графика функции

Зная график функции у = f ( x ) , можно построить графики функций у = f ( x + m ) , у = f ( x )+ l и у = f ( x + m )+ l . Все эти графики получаются из графика функции у = f ( x ) с помощью преобразования параллельного переноса: на m единиц масштаба вправо или влево вдоль оси x и на l единиц масштаба вверх или вниз вдоль оси y .

4. Графическое решение квадратного уравнения

На примере квадратичной функции мы рассмотрим графическое решение квадратного уравнения. Графиком квадратичной функции является парабола.

Что знали о параболе древние греки?

Современная математическая символика возникла в 16 веке.

У древнегреческих же математиков ни координатного метода, ни понятия функции не было. Тем не менее, свойства параболы были изучены ими подробно. Изобретательность античных математиков просто поражает воображение, – ведь они могли использовать только чертежи и словесные описания зависимостей.

Наиболее полно исследовал параболу, гиперболу и эллипс Аполоний Пергский , живший в 3 веке до н.э. Он же дал этим кривым названия и указал, каким условиям удовлетворяют точки, лежащие на той или иной кривой (ведь формул-то не было!).

Существует алгоритм построения параболы:

Находим координаты вершины параболы А (х 0 ; у 0): х 0 =- b /2 a ;

Y 0 =ах о 2 +вх 0 +с;

Находим ось симметрии параболы (прямая х=х 0);

Составляем таблицу значений для построения контрольных точек;

Строим полученные точки и построим точки им симметричные относительно оси симметрии.

1. По алгоритму построим параболу y = x 2 – 2 x – 3 . Абсциссы точек пересечения с осью x и есть корни квадратного уравнения x 2 – 2 x – 3 = 0.

Существует пять способов графического решения этого уравнения.

2. Разобьём уравнение на две функции: y = x 2 и y = 2 x + 3

3. Разобьём уравнение на две функции: y = x 2 –3 и y =2 x . Корни уравнения – абсциссы точек пересечения параболы с прямой.

4. Преобразуем уравнениеx 2 – 2 x – 3 = 0 при помощи выделения полного квадрата на функции: y = ( x –1) 2 иy =4. Корни уравнения – абсциссы точек пересечения параболы с прямой.

5. Разделим почленно обе части уравненияx 2 – 2 x – 3 = 0 на x , получим x – 2 – 3/ x = 0 , разобьём данное уравнение на две функции: y = x – 2, y = 3/ x . Корни уравнения – абсциссы точек пересечения прямой и гиперболы.

5. Графическое решение уравнений степени n

Пример 1. Решить уравнение x 5 = 3 – 2 x .

y = x 5 , y = 3 – 2 x .

Ответ: x = 1.

Пример 2. Решить уравнение 3 x = 10 – x .

Корнями данного уравнения является абсцисса точки пересечения графиков двух функций: y = 3 x , y = 10 – x .

Ответ: x = 8.

Заключение

Рассмотрев графики функций: у = ax 2 + bx + c , у = k / x , у = √ x , у = |x |, у = x 3 , у = x 4 , у = 3 √x , я заметила, что все эти графики строятся по правилу параллельного переноса относительно осей x и y .

На примере решения квадратного уравнения можно сделать выводы, что графический способ применим и для уравнений степени n.

Графические способы решения уравнений красивы и понятны, но не дают стопроцентной гарантии решения любого уравнения. Абсциссы точек пересечения графиков могут быть приближёнными.

В 9 классе и в старших классах я буду ещё знакомиться с другими функциями. Мне интересно знать: подчиняются ли те функции правилам параллельного переноса при построении их графиков.

На следующий год мне хочется также рассмотреть вопросы графического решения систем уравнений и неравенств.

Литература

1. Алгебра. 7 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

2. Алгебра. 8 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

3. Алгебра. 9 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

4. Глейзер Г.И. История математики в школе. VII–VIII классы. – М.: Просвещение, 1982.

5. Журнал Математика №5 2009; №8 2007; №23 2008.

6. Графическое решение уравнений сайты в Интернете: Тол ВИКИ; stimul.biz/ru; wiki.iot.ru/images; berdsk.edu; pege 3–6.htm.

Пусть имеется полное квадратное уравнение: A*x2+B*x+C=0, где A, B и C - любые числа, причем A не равно нулю. Это общий случай квадратного уравнения. Существует также приведенный вид, в котором A=1. Чтобы решить графически любое уравнение, нужно перенести в другую часть слагаемое с наибольшей степенью и приравнять обе части к какой-либо переменной.

После этого в левой части уравнения останется A*x2, а в правой - B*x-C (можно предположить, что B - отрицательное число, сути это не меняет). Получится уравнение A*x2=B*x-C=y. Для наглядности в этом случае обе части приравнены к переменной y.

Построение графиков и обработка результатов

Теперь можно записать два уравнения: y=A*x2 и y=B*x-C. Далее необходимо построить график каждой из этих функций. График y=A*x2 представляет собой параболу с вершиной в начале координат, ветви которой направлены вверх или вниз, в зависимости от знака числа A. Если оно отрицательно, ветви направлены вниз, если положительно - вверх.

График y=B*x-C представляет собой обычную прямую линию. Если C=0, прямая проходит через начало координат. В общем случае она отсекает от оси ординат отрезок, равный С. Угол наклона этой прямой относительно оси абсцисс определяется коэффициентом B. Он равен тангенсу наклона этого угла.

После того как графики построены, будет видно, что они пересекутся в двух точках. Координаты этих точек по оси абсцисс определяют корни квадратного уравнения. Для их точного определения нужно четко строить графики и правильно выбрать масштаб.

Другой способ графического решения

Существует еще один способ графического решения квадратного уравнения. Необязательно переносить B*x+C в другую часть уравнения. Можно сразу построить график функции y=A*x2+B*x+C. Такой график представляет собой параболу с вершиной в произвольной точке. Этот способ сложнее предыдущего, зато можно построить только один график, чтобы .

Сначала нужно определить вершину параболы с координатами x0 и y0. Ее абсцисса вычисляется по формуле x0=-B/2*a. Для определения ординаты нужно подставить полученное значение абсциссы в исходную функцию. Математически это утверждение записывается так: y0=y(x0).

Затем требуется найти две точки, симметричные оси параболы. В них исходная функция должна обращаться в ноль. После этого можно строить параболу. Точки ее пересечения с осью Х дадут два корня квадратного уравнения.

На этом видеоуроке к изучению предлагается тема «Функция y=x 2 . Графическое решение уравнений». В ходе этого занятия учащиеся смогут познакомиться с новым способом решения уравнений - графическим, который основан на знании свойств графиков функций. Учитель покажет, как можно решить графическим способом функцию y=x 2 .

Тема: Функция

Урок: Функция . Графическое решение уравнений

Графическое решение уравнений основано на знании графиков функций и их свойств. Перечислим функции, графики которых мы знаем:

1) , графиком является прямая линия, параллельная оси абсцисс, проходящая через точку на оси ординат. Рассмотрим пример: у=1:

При различных значениях мы получаем семейство прямых параллельных оси абсцисс.

2) Функция прямой пропорциональности график данной функции - это прямая, проходящая через начало координат. Рассмотрим пример:

Данные графики мы уже строили в предыдущих уроках, напомним, что для построения каждой прямой нужно выбрать точку, удовлетворяющую ей, а второй точкой взять начало координат.

Напомним роль коэффициента k: при функция возрастает, угол между прямой и положительным направлением оси х острый; при функция убывает, угол между прямой и положительным направлением оси х тупой. Кроме того, между двумя параметрами k одного знака существует следующее соотношение: при положительных k чем он больше, тем быстрее функция возрастает, а при отрицательных - функция быстрее убывает при больших значениях k по модулю.

3) Линейная функция . При - получаем точку пересечения с осью ординат и все прямые такого вида проходят через точку (0; m). Кроме того, при функция возрастает, угол между прямой и положительным направлением оси х острый; при функция убывает, угол между прямой и положительным направлением оси х тупой. И конечно величина k влияет на скорость изменения значения функции.

4). Графиком данной функции является парабола.

Рассмотрим примеры.

Пример 1 - графически решить уравнение:

Функции подобного вида мы не знаем, поэтому нужно преобразить заданное уравнение, чтобы работать с известными функциями:

Мы получили в обоих частях уравнения знакомые функции:

Построим графики функций:

Графики имеют две точки пересечения: (-1; 1); (2; 4)

Проверим, правильно ли найдено решение, подставим координаты в уравнение:

Первая точка найдена правильно.

, , , , , ,

Вторая точка также найдена верно.

Итак, решениями уравнения являются и

Поступаем аналогично предыдущему примеру: преобразуем заданное уравнение до известных нам функций, построим их графики, найдем токи пересечения и отсюда укажем решения.

Получаем две функции:

Построим графики:

Данные графики не имеют точек пересечения, значит заданное уравнение не имеет решений

Вывод: в данном уроке мы провели обзор известных нам функций и их графиков, вспомнили их свойства и рассмотрели графический способ решения уравнений.

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

Задание 1: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 494, ст.110;

Задание 2: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 495, ст.110;

Задание 3: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 496, ст.110;